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Continuity of Type-1 Intermittency
from a Measure-Theoretical Point of View
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We study a simple dynamical system which displays a so-called “type-1 inter-
mittency” bifurcation. We determine the Bowen—Ruelle measure u, and prove
that the expectation u#,(g) of any continuous function g and the Kolmogoroff—
Sinai entropy h(u,) are continuous functions of the bifurcation parameter .
Therefore the transition is continuous from a measure-theoretical point of view.
Those results could be generalized to any similar dynamical system.

KEY WORDS: Onset of turbulence; dynamical systems; bifurcations;
invariant measures.

1. INTRODUCTION

It is now well known that there are many different ways to turbulence in
fluid systems. Among them intermittency stands out as one of the most
interesting since it displays a seemingly gradual transition to turbulence.
Such a transition has been observed in experiments on the Rayleigh—Bénard
thermogravitational instability in confined geometry by P. Bergé and M.
Dubois (experiment on silicone oil with high values of the Prandtl
number®) and A. Libchaber and J. Maurer (experiment on liquid helium 4
with small values of the Prandtl number®) P. Bergé and M. Dubois observe
the following sequence of bifurcations when the Rayleigh number Ra is
increased:

(1) First stationary convection sets in for Ra = Ra,.

(ii) Then a time-dependent monoperiodic regime takes its place
(Ra = Ra,).

(iii) For still higher values of the Rayleigh number (Ra > Ra,), the
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system undergoes a new transition (intermittency). The whole structure is
randomly disrupted by bursts of turbulence; the periods of quiet
monoperiodic regime become shorter and shorter as the Rayleigh number is
increased up from Ra until convection becomes fully turbulent.

In Libchaber and Maurer’s experiment, the bifurcation scheme is
slightly different:
(i) Stationary convection sets in for Ra =Ra,.

(ii) For Ra=Ra, convection becomes monoperiodic with a low-
frequency f, probably associated with a varicose instability.

(iii) For Ra=Ra, a new frequency f, associated with transverse
oscillations of the rolls appears in the spectrum. f, and f, are not commen-
surate.

(iv) For Ra>» Ra, the preceding biperiodic regime undergoes a tran-
sition of the type described above (intermittency).

Thus in both cases a continuous transition from a periodic or
quasiperiodic regime to turbulent convection is observed.

Such a transition also occurs in the Belousov—Zhabotinski chemical
reaction as observed by Roux et al.®” The experiment is performed in a well-
stirred tank; therefore no spatial structure can appear and the system’s
evolution is governed by the sole kinetic equations. That difference does not
prevent the occurrence of a transition from an oscillatory regime to
turbulence by intermittency when the flux of reacting products is increased.
Therefore we may expect such a bifurcation to occur in model dynamical
systems. Y. Pomeau and P. Manneville” have devised such dynamical
systems and called type-I intermittency the transition to chaos which occurs
for a one-parameter family of order-preserving endomorphisms of S' when a
stable periodic orbit vanishes. That vanishing occurs when the stable orbit
collapses with a nearby unstable one of the same period. Such a bifurcation
is structurally stable: nearby families for the relevant C" topology will
undergo the same bifurcation. In what follows, we study a family
{f., € € ]e,, e[ of nonsingular order-preserving C* endomorphisms of S’
with degree 2 displaying such a bifurcation. For ¢ € 0 the endomorphisms
possess a stable fixed point x* (see Fig. 1). The bifurcation takes place at
¢ =0 and leads to an Axiom A dynamical system (as defined by Z. Nitecki
for endomorphisms of S' ®),

Let x§ be the location of the stable fixed point for & =0. Then, the
generic form of the endomorphism f, will be near x¥ and for |¢| small
enough
ANED)

5 x—xf) +O(x—xFl e+ x—x§))  a>0

[ix)=x+ae+
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Fig. 1. Bifurcation diagram.

We take the precise form
x—xF+e
fs(x) = x;)'< + .

1 —a(x—xi)

which enables explicit calculations (see Proposition 2.2 and Proposition 2.3).
Far from xJ, we shall also require for the sake of simplicity that f, have a
constant derivative.

In Section 2, we introduce our model and study its fundamental
properties. We prove that for ¢ > 0, the dynamical system is hyperbolic and
investigate the consequences of that hyperbolic character on the structure of
fundamental intervals. We also deduce from the local form of the map f, near
xg some useful results about the orbits’ behavior in that region.

In Section 3, we study the relevant invariant measures. We prove that
for € <0, the relevant invariant measure is a Dirac measure. To do so, we
prove by methods similar to Misiurewicz’s'® that almost every point belongs
to the basin of the stable fixed point.

In Section 4, we study the continuity of the bifurcation from a measure-
theoretical point of view. We show that for € > 0 the absolutely continuous
invariant measure is weakly continuous and prove that it converges to the
Dirac measure 5;"0 for the weak topology when ¢ goes to zero. Those results
imply that the expectation of any C° function continuously varies with &,
though a bifurcation take place. We also prove the continuity of the entropy
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h(u,) of the invariant measure. Those results give a striking example of the
importance of measure-theoretical aspects in the study of dynamical systems.
The bifurcation undergone by our system is continuous from a measure-
theoretical point of view, though it is discontinuous from a topological one.
Moreover measure-theoretical properties give us a much more detailed
picture of our dynamical system than the crude topological description does.

The proof we give of the measure-theoretical continuity of the transition
is mainly based on (1) the hyperbolicity of the system for ¢ > 0 and (2) the
local expression of the map near xF. We use the explicit form of f; only to
prove the hyperbolicity and to obtain certain estimates we need (see
Section 4.2). Therefore, we expect that every similar family of
endomorphisms which displays a transition from a stable periodic orbit to an
expanding regime will present the same property of continuity, of course
more lengthy calculations would then be required to obtain estimates similar
to those of Section 4.2.

2. THE MODEL AND ITS BASIC PROPERTIES

2.1. The Model

In this section, we define the model we use in the sequel. Let xJ be
come real number in |0, 1/2[, a, ¢, and ¢, some real numbers a >0,
€4 < (3/)x¥ and 0>¢,>sup{—(1/a), —ax¥’, —(1/2) @+ 1 3axF +
2axih)l.

For any ¢ in Je,, ¢, we define

1
X10= 3 (14 3axy — [(1 —ax$)? + 8a(xF —¢€)]?}

1
X0= {1+ 3axy + [(1 —axd)? + 8a(xy —¢)]V?}

1 1 +ae\?
w1 (5]

Then, we define a C° map f, from the interval [0, 1] onto itself as follows
(see Fig. 2):

fe(x):zx on [Oﬁxl,eJ

x—xF+e
I —alx —xg)

f"e(x) = 2x on [x,,, 1/2]
fx)=2x—1 on [1/2,1]

f‘s(x):x(;k + on [xl,e’XZ,s}
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Fig. 2. The map f; (for & > O).

The definition of ¢, and ¢, ensures that
0 <xy <X <y <Xy, < 1/2

Notice that a = 3(f{(xF)) and f{"(x; ) = 2.

By a slight alteration of f, in neighborhoods of X, and x, ., we
transform £, into a C* map f, on S’. We proceed to that regularization as
follows. We choose some real numbers b and ¢ 0 < b < x,,< ¢ <x§ such
that for every ¢, in le,, & f.(b) > ¢. Then we modify f, on [b,c] so as to
obtain a C* map which satisfies

(1) fi">Ton b x|
2) 1>fP>FY>00n]x,,,c| (see Fig. 3)

In the same way we choose some real numbers e and f
X3, <€ <x,,<f<1/2, such that for every ¢ in Je,, ¢,[ f(e) > f and we
modify f, on [e, ] so as to obtain a C* map which satisfies /"’ > 2 on e, f|[
(see Fig. 4).

Moreover we proceed to the regularization so that the family
{/.» € € Je., 4]} satisfies the following properties:

822/36/3-4-3
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Regularization near x, ;.

Fig. 4. Regularization near x, ,.
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(1) 1If we call ¢, the inverse map of f, from [0, 1| onto [0, 1/2] and v,
the inverse map from [0, 1] onto [1/2, 1], for every point x in S', f(x),
0(x), and fP(x) are C' functions of the parameter ¢, while /(" is a C?
function of &.

(2) There is some real number w >0 such that for every ¢ in
Jeer €4l V(%) > w. Therefore f, is a nonsingular map for every ¢ in Je., &,/.

Since we can choose ¢ — b and f — ¢ as small as we wish (for |¢,| and &,
small enough) and since the regularization has no other aim than ensuring
the smoothness properties of the dynamical system, we shall no longer take
account of it in what follows.

The dynamical system thus obtained has for ¢ € 0 a stable fixed point
x¥ € |x, X, [ That fixed point vanishes for ¢ > 0. In that parameter range,
the system is actually expanding. Before proving it, we shall prove some
useful equalities. Those equalities are derived from the way we define f, in
the region [x, ,, x, .

2.2. Some Useful Equalities

Proposition 2.2.1. ¢ (y)=x#+ (y —xF —¢)/[l +a(y —x¥)] on
the interval [fs(xl,g)afg(xz,s)]‘

Propesition 2.2.2. Tet ¢ be in ]0,¢4,] and x be any point in
[x).¢5 %, ). Let n € N be such that fi{x) <x, , for any j, 0 < j < n. Then for
any j, 0<j<n,

(1) fix)=xF+ <%) 1/Ztan Jj arctan(ag)'/* 4+ arctan [(%) " (x—x(;“)]

& + a(fifx) — x§)’
e+ a(x —xF)?

2) V)=

The proof is recursive. It is left to the reader.

2.3. Hyperbolicity of the Dynamical System for € > O

Theorem 2.3. If axf <2/3 and &, is small enough, then the
dynamical system is expanding in the following sense: there is some d > 1
and a continuous positive function F(¢) on ]0, ¢,] which does not vanish on
that interval such that for any ¢ in |0, ¢,[ and any n € N

Inf(£7)(x) > Fe)d"*

The proof is given in Appendix 2.3.
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2.4. The Fundamental Intervals

For any ¢ in |0,&,] we call fundamental interval of order k any
connected closed subset Ik, i,¢ which satisfies f*(Ik, 7, &) =[0, 1]
i=(igs iy ) €10, 1}¥ is the kneading sequence of Ik,i . It is thus
defined: i, = 0 if and only if f"(Ik, i, ¢) = [0, 1/2], i, = 1 otherwise.

In this part, we derive from the hyperbolicity two results on
fundamental intervals we shall use later:

(i) First we give an upper bound for the Lebesgue measure of any
fundamental interval (Proposition 2.4.1). [We shall denote by A{A) the
Lebesgue measure of the measurable set 4. |

(ii) Then we prove that the Lebesgue measure of any fundamental
interval is a continuous function of ¢ (Lemma 2.4.2).

Proposition 2.4.1. For any ¢ in ]0, ¢,[, any k € N, any fundamental
interval Ik, 1, &, A(Ik, 1, €) < [1/F(¢)] d %V~
Proof.  Since fX(Ik,i,¢) = [0, 1],

- 1
Ak, I, —
U &) < T 7™

Using Theorem 2.3 we have then

T 1 N
Ak, i, €) <1—V(—5d |

Lemma 2.4.2. There is some continuous function y on 0, e,[ such
that for any given ¢ in 0, e,[, |A(Ik, i, e’) — ATk, i, €)| < x() |’ — €| holds,
for every k€ N, every kneading sequence i € {0, 1}* and any ¢’ in some
neighborhood of «.

The proof is given in Appendix 2.4.2.

2.5. The Nature of the Map near x§ and Its Consequences

We derive from the nature of the map near xJ some results about the
orbits of points in that region.

Lemma 2.5.1. We may choose some f > 0 such that for ¢, small
enough, we have the following:

(1) For any x, in |xF +B/4, x§ + B/2[, any ¢ in ]0,¢,[, and any
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n€N such that n<<pfe~"? the sequence {x,,p € {0,..,n}} defined by
X, 1= @4x,) satisfies

1
“a(ptr)

1
<
NEEDE

X, = Xx§
where 7= 1/a(x, — x¥).

(2) For any x, in |xF —pB/2, xf —B/4[, any ¢ in ]0,&,[, and any
n€N such that n<fe~'?, the sequence {x,, p € {0,..,n}} defined by
X, .1 = fi{x,) satisfies

1 1 1
- < h T
% mp+wﬁ\wp+wfﬂ W e — %)

*
Xo

The proof is given in Appendix 2.5.1.
We extend this result to ¢ =0.

Lemma 2.5.2. For f small enough and any x, in |x§, x§ + f[ the
sequence {x,,n € N} defined by x,,, = ¢.(x,) satisfies

1 1 1

— he T=
a0 where

ek _—
Tn %o S (m+1)? a(x, —x&
0 0

for every n € IN.

The proof is the same as before, except that the Proposition 2.5.4 of
Appendix 2.5.1 is now pointless.
We shall also need in Appendix 3.2.1 the following result.

Lemma A.5.3. For 8 small enough and any 7 in [xF, x§ + f]
(1) f37(x)>0on [xg, 7]
2) sup f5P(x)< inf f(V(9)

[x§,n] [n,1/2]

The proof is left to the reader.

3. INVARIANT MEASURES

We require for an invariant measure p, to be physically meaningful that
for every C° function g on S' and almost every point x

N—1

im — Y (i) =e)

Now N jt‘O

Such measures are usually called Bowen—Ruelle measures. ‘9
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In what follows we prove that for ¢ in |e,, O], the Dirac measure d(x})
is our system’s Bowen—Ruelle measure (Section 3.1). We extend that result
to ¢=0, which requires some modifications of the preceding proof
(Section 3.2). Then in Section 3.3, we state some well-known results about
the Bowen—Ruelle measure of a hyperbolic system (such as ours for ¢ in
10, £,40); we shall use those results in Section 3 to prove the weak continuity
of the invariant measure and the continuity of its metric entropy.

3.1. e<0

When ¢, < ¢ <0, the map f, has a linearly stable fixed point x}. S' is
divided into two subsets: (1) the basin of x* which is an open set, and (2) an
invariant cantor set C,. The Dirac measure concentrated at x} is an
invariant measure. We show in this part that it is the Bowen—Ruelle measure
by proving that A{(C,) =0 (Theorem 3.1)

We first introduce some notations:

(i) X, is the unstable fixed point lying in |x¥, 1/2].

(i) J,=11/2, y (X

For every n €N, we define E, = {x€ Cg 1,, f2x)&J, for every p
0 < p<n} (see Fig. 5).

E, is the set of points, the n + 1 first iterates of which remain outside 7,.
(E,,n €N} is obviously a decreasing sequence of subsets and the Cantor set
C, may be defined as C,= () ,,en E,-

We are going to prove (Lemma 3.1.4) that {4(R,), n € N} is majorized
by a geometric sequence which converges to zero. The result A(C)=0is a
direct consequence of that lemma.

Before proving Lemma 3.1.4 we need some preliminary results. Let K,
be any connected component of E,. Then, we have the following:

Lemma 3.1.1. The map f}|;, is a diffeomorphism from K, onto
S(K,)-

The proof is inductive.
We have also the following:

Proposition 3.1.2. [f%(K \E,.,) is equal to either ¢ (J,) or v (/).

Proof. The recursive proof is left to the reader.

Lemma 3.1.3. There is some J > 1 such that for every n € N, every
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Fig. 5. Subsets E, for £ <O0.

connected component K, of E, and any point (g, b) in K. the following
inequality holds:

1@

VAR
Proof. We set a= infcsl,effg”(x), a>1, and L=supc_,, | F2(x).
Then @
sup [(log /)] < —Eﬂ%l <L
Caile ljgf

For a given n and given (a, b) in K2,

(fn)m( ) {ﬂ (V) rk (1) pk
lOg (fn)(l)(b) E } : Ilogf (f (a)) logfs (fe(b))|
Hence
[TARI) v N
op JI | <L S 7@~ s




332 Meunier

From Proposition 3.1.1 we have |/%(a)— f"(b)| < 1. Hence for every k
0<k<n—1, |f37" (/@) — /i (/50 < I, which implies |/3(a)—
F4®)| - a"* < 1. Therefore

(f'g’)“)(a)El ol
S L LN ——
UGN T ettt

—_
and, setting & = exp|[L/(a —~ 1)], we have

L _ (D)7
e < !

log

Lemma 3.1.4. There is some { > O such that for every n € N,
ME, . )< (1 =QAME,)
Proof. We have

ME,) inf(f)® S ASHE) < | (3.15)

and also

ALK NE 1) SMENE, 1) sup rn (3.1.6)
if we set £ = inf{i(o,(J ), My (J )}, we have from Proposition 3.1.2
MK NE 1)) 2 & (3.1.7)
From inequalities 3.1.6 and 3.1.7, we deduce

¢
/I(Kn\EnH)?W (3.1.8)

From inequalities 3.1.5 and 3.1.8 we have then

A(Kn r\EVIH»I) — 1 _ A'(Kn\En%—l) < 1 _ ian,,(fZ)“)
MK,) MK sup, (/5

From Lemma 3.1.3, we have then

MK, NVE, )

LS
WKy 75
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Thus setting { = £/J, we obtain
AK,NE,, )< (1—-0AK,)
and summing over connected components of E,
ME ) <S(A=0AE,) 8
Theorem 3.1. A(C,) =0 for every ¢ in |, O[.

Proof. For every nE€N, C,c E, and A(Cp) K ME,) < (1 — )" ME,).
Therefore A(C,)=0. 1§

3.2. €=0

In this section, we extend the preceding results to ¢ = 0 by proving that
AM(C,)=0. The map f, is not expanding on [x¥, 1] since fi’(xF)= 1.
Therefore we must modify the preceding proof, which relied on the fact that
SP(x)>a>1o0n [£, 1] and we must now take into account the nature of
the map near xg.

As in Section 3.1, we consider the subsets E,,. For every n, x{* is the left
end point of a particular connected component 7, of E,. It plays a special
part since the map f; is expanding on every component of E, except I,.
Besides I,,,=¢,(,) (see Fig.6). We now prove a result similar to
Lemma 3.1.3:

Lemma 3.2.1. There is some J > 1 such that for any n € N, for any
connected component K, of E, except I,, and for any point (a, b) in K},

G
ERNTHRON

Proof.  We give the proof in Appendix 3.2.1.
Then we consider the components I, and prove that their Lebesgue
measure goes to zero when #n goes to infinity.

Lemma 3.2.2. There is some N, € N such that for n > N,

2
Al) € ——
) a(n— N, + 1)

Proof.  We know that I, = ¢g([,). Therefore A(I,) goes to zero when n
goes to infinity and for any given S there is some N, such that
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o Qg "Po("/z) 1A Fig. 6. Connected components [, for e =0.

Iy, < [x§, x§ + B]. Then we apply Lemma 2.5.5 to the sequence {x,, n € N}
defined by x, = sup{x, x € Iy, } and we get
I N 1 her 1
, where 7=
an+1)  (n+1)"?

Ayysn) < =iy
Ny

Therefore, we have for § small enough

2
Mg n) < i 1)

Now we prove the result we were aiming at and which is a consequence of
the two preceding results:

Theorem 3.2. A(C,)=0.

Proof. Let Ky ., be any component of Ey ., such that
Kyyin OV y, ,=@. From Lemma 3.2.1, we deduce, as in the proof of

Lemma 3.1.4,
;l'(KN0+Il mENo+n+1) < (1 - G)A(KN(,M:)
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where G = (1/8)inf{A(¢, o w,o([0, xF ). A(wi([0, xF]))} < 1. Since

)'(EN0+H+]):’l(INowhnmEN(ﬂ-n-!-l)+ Z A(KNO—anENO-Hl-f])

KNo+n
Kng+nMINg+n=g

we have
A(ENO-#rH—l) A(IN0+)1)+ (1 -‘G)/I(ENU+n)

Using Lemma 3.2.2 we obtain

2
A(EN0+I1+I) < m + (1 - G)’I(ENo+n)

so that

2 (1= G)?
A(Eyyen) < (1= G alEy) + o N LZO0
p—0 N—D

We have for n > 1

i (1—GyY (1 -G)y no)! 2 &
R PR T (B O
o H—D s=0 N—p p=ln21+1 M p=o
njl 2
+(1+&)" 3 <—=+n(1-6)"
p=lia1e1 B—p  nG

(Throughout this text [a] denotes the greatest integer which is lesser or equal
to a.) Therefore, we have

M) < (1= GY A(By) 4 o 4 2 (1 = Gy

When n goes to infinity, the right-hand side goes to zero. And, since for
every n € N Cy< Ey, . ,, we conclude that 2(C,) =0. |

Therefore the Bowen—Ruelle measure is for ¢ =0, the Dirac measure
olxg)

33. €>0

For ¢ in |0, ¢,[ the map f; is expanding. Such systems have been widely
studied. So we merely state the results which are useful to us:

(1) The system has one and only one absolutely continuous invariant
measure 4,.
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(2) The density p, of that invariant measure is a C' function on S
since f, is C°.

(3) On sup(u,) ={x€S', p(x)#0}, p, is bounded far away from
zero.

(4) The metric enropy A{x,) of the invariant measure satisfies

hu ) = i (log V)

4. CONTINUITY OF THE INVARIANT MEASURE

We have shown that for ¢ 0, the Ruelle—Bowen invariant measure is a
Dirac measure. Its location, the stable fixed point x¥, smoothly depends on e.
Therefore, the Bowen—Ruelle measure is weakly continuous on e, 0[. In
this part, we prove that the invariant measure is continuous for the weak
topology when ¢ > 0 (Section 4.1). Then we prove the weak continuity at the
bifurcation threshold ¢ =0 and conclude that the Bowen—Ruelle measure is a
continuous function of € on |g,, g, for the weak topology (Section 4.2). We
also prove the continuity of the Kolmogoroff-Sinai entropy (Section 4.3).

4.1. Weak Continuity of p_fore > 0

In this section we prove

Theorem 4.1. For any C° function g on [0, 1], the expectation u(g)
is a continuous function of ¢ on ]0, &,[.

We use symbolic dynamics related to the Markov partition {[0, 1/2},
[1/2, 1]} to prove that result. ({O 1}™ d) is a compact space for the metric d
thus defined: For (i, j) € {0, 11" x {0, 1}*, let k =sup{n € N, Yp E N, p < n,
i,=Jj,), then d(i, j) = 1/2*.

For every ¢ in_ |0, g, we define a map 7, from {0, 1}™ onto [0, 1] by
setting 7,(7) = x, if i is an itinerary of x, that is to say, if i, = [/"(x) + 1/2]
for every n € N. The map 7, is not one-to-one since pre-images of 1/2 have
two itineraries. However the Lebesgue measure of this set is zero so we shall
encounter no trouble. We prove the foliowing:

Lemma 4.1.1. 7, is Holder continuous:

LIGEEINIE ‘;(f) (d(E, ) iora/ e v
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Proof. Assume d(i, j)= 1/2* for some k > 1. Then 7 (i) and 7()) lie
in the same fundamental interval of order £ — 1, so that from 2.4.1 we have

N A 1 ~(k—1) /e d\/g T Ay(ogd)/log2) e
7D = 7)< g <oy @GN

and this inequality still holds if d(;, /)=1. N

Moreover the map 7: € — 7, from 0, ¢, into Z°({0, 1}, [0, 1]) satisfies
a local Lipschitz property:

Lemma 4.1.2. There is some continuous function y on 10, 4] such
that for every &, in 0, &4, |7,({) — 7, (7)] < x(g0) |€ — €| on a neighborhood
Vie,) of g,.

Proof. That result is nothing else than Lemma 2.4.2 under an other
guise.

To every C° function g on [0, 1] we associate a C° function g, on
{0, 1}™ thus defined g,(i) = g o 7,(i)

Lemma 4.1.3. g, is continuous in £ on 0, ¢,[ for the C° norm.

This is an obvious consequence of Lemma 4.1.2. We define a measure
A, on {0, 1}" by setting 1,(g,) = A(g) for every g in #°([0, 1]). We define a
potential {¢¥, k € N} on {0, 1}" as follows:

Let €k be the set {(/,..,/ + k), j € N}. For every k € N, we define a
function @ on 'k x {0, 1}**! as follows:

¢2(j§ iy) = log f(al) o {0,(l))

and for k> 1

DY (Jooes J ks gy i) = log [ 0 0 0p, ((Fgsemes iy)
—log [V o m,0 0, (igseres Bx_1)

where ¢, denotes the embedding from {0, 1}/ into {0, 1}"™ which associates to
(ig»rr i;) the sequence / of {0, 1} thus defined: /, =i, for 0K p < j, 1, =0
for p > j. Then 4, is the Gibbs measure on {0, 1}" associated to the potential
{®@* k€ N} as was shown by O. Lanford."" ({0, 1} d) is a compact space
for the metric d thus defined: for (7, /) € {0, 1}2X {0, 1}% let k = sup{n € N,
YpE€ Z,|p|<n,i,=j,} then d(i, jy= 1/2%.

We define a shift-invariant potential {w*, k € N} on {0, 1}Z as follows:

For every k € N, we introduce Dk = {(J,.... j + k), j € Z} and we define
a function % on Dk X {0, 1}**" as follows:

Y oo T H K3 gaenes By) = PE(0serry K3 1 poves )
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The potential {w*, k€ N} is invariant under the shift automorphism on
{0, 1}%. Besides, there is some D > 0 such that for every k € N and every ¢

n ]0, g4

il = sup WOy k3 g pennr i) < D

(igse- 1 €40, 1)k +1
Moreover the potential decreases fast with increasing k:

Lemma 4.1.4. For any ¢, in |0, &,[ there is some o > 0 and some
B > 0 such that the following inequality holds on a neighborhood ¥(g,) of
€0s

> kllvki e <B
k=0

Proof.  The function log f " is Lipschitz:
llog /) (x) —log £ (¥)] <A, |x — (4.1.4)
where

_ SUps: Lf
20 infg: | f

We  have  d(0,(igy K)s 04 (g k— 1)) < 1/2% Therefore, from
Lemma 4.1.1 we deduce

dﬂ
Oy ) = T Oy ey k= 1)) < o 2THATORA0ET
Taking x = 7, (0(ig,s it)) and p =7, (04— ({5, kK — 1)) in inequality 4.1.4
we obtain

llog f(” © Mo (04l s i) — lOG fm 0 M eo(T k- 1{fgreees G|
1/2
< Aeod(EO) 2—ka})/z(logd/log 2)

F(eo)

so that

ey
2- kel/2(logd/log 2)

F()

If we set g = 2&//DUogd/10g2) 40 B .- 24 deg}/ZZgo k(2 —(e/} 2 tog d/log 2))/( we
&g
have then on a neighborhood V(e,) of 6,5, > s, k|w¥| e** <B. 1

lyell < —=2—-
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We call 7, the shift-invariant Gibbs masure on {0, 1}7 associated with
the potential {w*, k € N}. We define a shift-invariant measure , on {0, 1}"
by ii,(g) =& o 7) for every C° function g on {0, 1}™.

Then we have the following:

Lemma 4.1.5. (g, is a C° function of ¢ on |0, &,/.

We give the proof in Appendix 4.1.5.

Then, since the absolutely continuous f-invariant measure 4, on [0, 1]
satisfies 4 (g) = i,(g,) for every C° function g on [0, 1], Theorem 4.1 follows
immediately.

4.2. Continuity of the Invariant Measure at the Bifurcation
Threshold e = 0

4.2.1. Preliminary Study. In this section, we show that far from x;
the invariant density p, is well behaved (Theorem 4.2.1).

Theorem 4.2.1. For any y >0 small enough, there exists some
K’ > 0 such that for ¢, small enough, the density p, of the invariant measure

satisfies -
px) < e p ()

for every ¢ in ]0,6,] and every x and y in CgqlxF—1y, xf+7[. An
immediate consequence of the result is that p, does not vanish.

The proof of Theorem 4.2.1 is as follows. We first prove two technical
results (Lemma 4.2.1 and Lemma 4.2.2). From those results, we deduce that
the nth iterate of the Lebesgue measure £, , is well behaved far from xg.
Then Lemma 4.2.1 enables us to take the limit thus proving Theorem 4.2.1.

Lemma 4.2.1. For ¢, and y small enough, there exists some real
number C > 1 such that for every ¢ in |0, ¢, and any interval 7 satisfying
the following conditions:

(1) AW) <1, where 1, = ay’.

@) INJ#@ (U= Ixi -7 xF +90).

(3) For some p>1, fZI)NJ=@ and for every ¢q, 1<g<p
SAHNIT+@.

(4) A2 <7

We have

gumm<awm)

We give the proof in Appendix 4.2.1.
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Lemma 4.2.2. There are some F > 0 and some « > 0 such that for
every ¢ in 0, §,[, every interval I which satisfies the following properties:

(1) AxDH<
Q) I<cJ

and every interval K such that f%(K) = I for some p € N we have
ME)Y L F27* M)

where s = card{j, 0<j < p, fUK)NJ #@ and fIt(K) NI =@} + card{},
0<j<p fUK) NI =2}

We give the proof in Appendix 4.2.2.

For every x in [0, 1], let 2, . = {», f%(y) = x} be the set of order n pre-
images of x. Then card X, =2". We define a mapgy, , from X, = into
{0, 1} by ¢, (¥) = ({4 i,_,) if and only if i, = [ f4(y) + 1/2] for every g
0<qg<n, ¢,, is obviously one-to-one and onto. If %, (x) is the density of
the nth iterate of the Lebesgue measure, we have from the expression of the
Perron—Frobenius operator

1
= g T

ZEZ, »
Then we have the following:

Lemma 4.2.3. There is some K’ >0 such that for every n €N,
every ¢ in 0, ¢,[ and every x and y in CJ

hn,ﬁ(x) < eKl(x_y) hn,G(y)

Proof. (a) Assume that |x—y|<#,. Let z€L, ., and z€ZX, , be
such that ¢, (2) =0, (7). Assuming x <y, we set [ =[x, y], K=z, Z],
and

SUPes1 |/ 6 (X)]

M= s
P inf, g /()

0<e<ey

Then

log (fn)(l)( )2‘ n—1

Y‘ J
(fn)(l)(~) <M lf (Z) f(y)l

0
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We define two sequences {j,, 1</ s} and {j], 1 </<s} as follows: For
every [, 1 /<5,
SKYNT#@and I K)YNT =@
FHKYNT# @ and fITEK)NT =@
YK)NJ =@ forevery 4, j; <t < j,,
Then 0 j, < jj < -+ < j, < ji, so that

[CG]
[R5

=1

§’<M3 Z MFUK)) + Z Z A UK))

g=1 j=j,

log

£ STy S )

g=1 j=jg+1 J=il+1

As |x — y| < n,, we deduce from Lemma 4.2.2

Ji—1 s—1 Jjgy1-1

2 M)+ 2 2 MUK+ Z MSUK))

Jj= ‘?1}_}+1 J=ig+1

<Flx—y| Z 2-at
t=0
From Lemma 4.2.1 we have for every ¢, 1 < g <5

Jg . .,
> ASUK)) < CA(SEHH(K))
j=l,
Setting
sg=card{}, 0 < j < jg, [1K)NJ # @ and fIHH(K) N T =)
+card{/, 0 < j< fy + L FAK) NI =@}
we have then from Lemma 4.2.2.

A(fIHY(K)) < |x — y| Fem %

Therefore
21 (1) MF |x — s
log E;L.;(])Z; \ 1_|x2_ay| +MClx— y] g e~ %%
and
(V@) ey . MF(1+C
Wge lx=yi, where X :——léf—“)

822/36/3-4-4
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Therefore, I

1 K'|x—yl|
2 THmE < > @

z€X, fez,,

and we have A, (x) e 'h, (y) when |x — y|< 7,.

(b) Assume now that |x— y|>n,. Always assuming y >x, we
introduce the sequence {x;,i € {0,... [(y — x)/n,] — 2}} defined by

X=X

X=X+, foreveryi,Ogig[y;x]—2
0

Xiy—x)ngl = y
we have then
hoo(x [—x)/mol =1 p (. ,
n,e( ) n,s( 1) <€K ty—x| I

hn,s(y) B i=0 hn,s(xi+1) =

Lemma 4.2.4. p, (x)=(1/N)YN_§ h, (x) converges uniformly on
S to the density p,(x) of the invariant measure u, when N - co.

Proof. We give the proof in Appendix 4.2.4.
Theorem 4.2.1 is an obvious consequence of Lemmas 4.2.3 and 4.2.4.

4.2.2. Behavior of the Density p, when € Goes to Zero. In this
section we prove the following:

Theorem 4.2.2, Let % be any compact set such that xF & .% then
p. converges uniformly to zero on % when & - 0.

That theorem shows that when ¢ — 0 the invariant measure #, converges
to the Dirac measure éxﬁ for the weak topology on the space of measures.
Everywhere in this section ¢ is positive.

Proposition 4.2.56. There is some K’ >0 such that for ¢, small
enough and for every ¢ in |0, &,, Sup,c yp(x) < €X' - inf . 5p(x)

Proof. 1t is an obvious consequence of Theorem 4.2.1.

Lemma 4.2.6. There is some J > 0 such that for every ¢, in |0, ¢,]
inf e p,(x) < (1/6)(ae)"?.

We give the proof in Appendix 4.2.6.

Lemma 4.2.7. There is some ¢ > 0 such that

sup p(x) < &e'? for every € € 10, &4]
xe X

This is an obvious consequence of Proposition 4.2.5 and Lemma 4.2.6.
Theorem 4.2.2 is an immediate consequence of that lemma. Theorem 4.2.2
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implies that the expectation z,(g) of any C° function g on S' converges to
g(x¥) when ¢ goes to zero with positive values. Since u(g) is a continuous
function of ¢, on 0, g, (Theorem 4.1) and Je,, O[ (then x(g) = g(x*)) it is
continuous on ]¢,, €,[. Therefore the invariant measure is weakly continuous
on le., ¢, (although a bifurcation occurs at € = 0).
4.3. Continuity of the Kolmogoroff—Sinai Entropy h{y,)

In this section we prove the following:

Theorem 4.3. The K-S entropy A(u,) of the Bowen—Ruelle measure
Y is a continuous function of € on e, &,/

Lemma 4.3.1. h(u,)is a C° function of ¢ on [0, &,[.

Proof. For any given ¢, and ¢ in ]0, ¢, we have

| (log f”) — u,(log f3))] < |llog /5" ~ log [ lco
+ |ulog f5;)) — palog f3;)
Since log f{"” and u(log i) are continuous functions of & (see

Theorem 4.2.1), u,(log ) is also a C° function of & As h(u)=
u(log fP)"¥ the K-S entropy is continuous on [0,¢,[. |

Lemma 4.3.2. lim,,, ,.,h(u)=0.

Proof. We have h(u,) = [, (log f{"(x))p(x) dx + [, (log /" (x))
px)dx where J=|x¥—yp, x&F+y[. We set a=supi|log/"|lw,
€€ 10,e,[}. Then Ay, < au(CJ)+ [, (log f"(x)) p(x) dx. From Lemma
4.2.6 we have u,(CJ) < &/e. As fV(x)= (1 + ae)/(1 —a(x—xF))? near xF
we have then

hu) < agy/e + | log(1 +ag) p x) dx

+2] |log(1 —ate —x§)| px) dx
J
Hence for y small enough
hu,) < Zaé\/e + 2ay + 2ae

We have then for every y > 0 small enough lim,, .., A(u,) < 2ay. Therefore
1ima—»0,6>0 hmﬁ) =0. I

For ¢ € Je,, 0] the Bowen—Ruelle measure is the Dirac measure ., so
that A(u,)=0 on le.,O[. Therefore A(u,) is continuous at ¢ =0. (From
Lemma 4.3.2) which proves the continuity of 2{u,) on |e,, &4]-
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5. CONCLUSION

We now give a brief physical interpretation of those result. Imagine a
physical experiment explained by type-l intermittency. Then the measured
mean value of any physical quantity will continuously evolve with the
control parameter. Besides, as soon as the threshold is crossed, the system
will be stochastic but as the rate of stochasticity (measured by A(u,))
increases up from zero with the control parameter it will take a very long
time to observe any sensitive dependence on initial conditions.
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APPENDIX 2.3: PROOF OF THE HYPERBOLICITY (THEOREM 2.3)

We set L,=sup{g€N, VYp€{0,.,q}fi(x;)<x;, and I,=
Sup{q € IN’ Vp € {O’"" Q}, fg(xl,s) <x4,e}’ where x4,e::xc>v‘k + (l/a)[l -
(1+ ag)'?] satisfies f"(x, )=1. f{" is increasing and smaller than 2
outside [x, ,, x5 . Taking into account the nature of the regularization, we
have then

nf(F90 () > (/1) 0x, )

S is increasing and smaller than 1 on [x,, x,,|; it is greater than 1
outside this region. Therefore infg,(f9) " (x) > (/2" (x, ) for every g such
that ¢ < L,. Hence, for every n € N, we have

(DD > (F59 V0, NIV (x,,)

Proposition 2.3.1. For ¢, small enough and axj < 2/3 there is some
number a >* 1 such that for any ¢ in 0, ¢,],

()P (x,0 > a

Proof. From the definition of I,, we have

S0, > 04x3,0
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From Proposition 2.2.1 we have then

g+ a(p(x; ) —x¥)*
LeyDiy )> X3¢ 0
(fe ) ( 1,6) e +a(x1,5—x6k)2

Hence for ¢, small enough and some a > 1,
(59 )2e>1 |

From Proposition 2.3.1 we deduce
inf(/3)" (x) > {29 V0, )} e Fle)  for e €10, g4

where  F(e)= (/1) (x, )/ (f~)"(x,,) is a continuous positive
nonvanishing function.

Proposition 2.3.2. For g, small enough, there is some number d > 1
such that {(f£9)(x, )}*F¢> dV¢ for any ¢ in ]0, ¢,].

Proof. We first estimate L,. From Proposition 2.2.2 we have

arctan[(a/e)"*(x; ,— x¢)] — arctan[(a/e)"*(x, ,— x§)]

L =
arctan(ac)"?

€

So that for &, small enough L, < 2m/ag’* for ¢ in ]0,e,]. From

Proposition 2.3.1 we have log((/%9)"(x; )) > loga. Therefore, setting
d = aV??* > 1, we have

()0 )y o> a
From Propositions 2.3.1 and 2.3.2 we deduce
inf(/) 0 (x) > Fle)d"V*

which ends the proof of Theorem 2.3.

APPENDIX 2.4.2: CONTINUITY OF THE LEBESGUE
MEASURE OF FUNDAMENTAL INTERVALS
(PROOF OF LEMMA 2.4.2)

Let us denote by .7, the set of order n pre-images of 1/2. This set is in a
one-to-one correspondence with {0, 1}” since we can associate to any point x
in %, an itinerary (i,..., f,) € {0, 1}" defined by

fy = [/50(x) + 3]

For every pEN and every itinerary i€ {0, 1}” we define x, ,(¢) as the
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location of the corresponding preimage of 1/2 and we prove that those
preimages continuously depend on e.

Proposition 2.4.3. There is some positive C° function x(¢) on 0, ¢4]
such that for any ¢ in ]0, ¢4, any p € N and any i € {0, 1}” the following
inequality holds on a neighborhood of &:

|xp,i(e") — x, (&)l <x(e) &' — &l
Proof. For given p and i, we define for every k, 0 <k p
X (6) =S x,.(8")
We introduce the sequence {£. ,(x,_,(¢")), k € {1,...,, p}} defined as follows:
ika,s € [0’ 1/2]5 55’,k(xk—1(8,)) = (pe’(xk(gi))
ifxg o € [1/2,1], &oulre 1(6") = wolxi(e")

As ¢, is a C' function of ¢ and dy (x)/0e =0, we obtain by an easy
induction:

] | 1T &0,

k-+1

-Z e

d
—@xp,i(ﬁ')

g=g

D)

g=¢

From Theorem 2.3, f, is expanding. Hence

p . 1 Y
j:I;ll & (&’ ))<F()d Pk

and, as F(g) < 1 on |0, ¢,[ we have

P
——Z

() &
We set B(g) = supg(d/de’) ¢,(x)|, _ ). B(€) is a C° function on |0, &,{ and

e’,k(xk—l,s’)

g'=¢

d
‘?18—,%,,'(8')

&

B(a) 1
F(a) —d Ve

Setting x(¢) = [4B(e)/F(e)}[1/(1 —d~ ‘/E)], we have then

l d x, (e’
dg' "7

d 7
‘E?xp,i(s )

g'=¢
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Hence, on a neighborhood of ¢

x()‘ —e

|xp,i(6 ) xp 1(8)| <

Now we prove Lemma 2.4.2.

Any order p fundamental interval has its end points in {0} {1} U
I,\J 7, _,. Hence, from Proposition 2.4.3, we have for ¢’ in a neighborhood
of any given ¢ in ]0, ¢4]

M’(Ip,i,e’)—l(]'p,i,s)* <X(6)|£I —8] I

APPENDIX 2.5.1: PROOF OF LEMMA 2.5.1

As f, is a C? endomorphism and £ and /¥ are, respectively, C* and
C' functions of the parameter &, we deduce from the Taylor formula:

[ =x+&+a(x —x¥)* +r(g,x)

with

o) = o = x0) | 52 £ 6)

e 0
o Dk
a:0+ 2 882 fE (xO)

E=¢g

R i 4 (.X' xO) 4 f(l)( >|<) + (x _6'x6k) f(s”(é):l

&= 6

where 0 <¢g,<¢, 0<¢g,<e and ¢ lies between xF and x. For ¢, small
enough and some £ > 0, there is some K > 0 such that |r(e, x)| < K |x — x|
(8+(x x¥)?) for 0<e<e, and |x —x¥|<pB. For any y in |x¥ —pf/2,
xy + B/2| the equation y = f,(x) has only one solution x € |p (xF — B/2),
@ (x& + B/2)| according to the implicit function theorem. Moreover, for ¢,
and f small enough:

(1) x€ Jx§ =B, x5 + ]
(2) x=y—e—a(y—x,) + )
3) e, MISK|y—xFl e+ (y—xH)

For given x, and n (satisfying the assumptions of Lemma 2.5.1.1) we define
the sequence {¢,, p € {0,...,n}} by t, =x — x§.

Proposition 2.5.2. If ¢, is small enough 0 <, <f/2 for every p
0<pgn
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Proof. The proof is recursive and left to the reader.

Then we have for every p in {0,..,n}, t,,, =, —eat; + 7, t, + x§).
For (6,v) € 2* we define a sequence {v,, p € {0,..., n}} as follows: v, =1,
vi=t;, and for p> 1, v, =v,+avl—v(B/p)’ — 6K(v) + v,(B/p)*). Let
{¥,» p € {0,..., n}} be the sequence defined by

1 1
where T=—

y”:U”_a(p+r)’ at,

Then we have the following:

Proposition 2.5.5:

(1) =05
(2) for B and &, small enough |y,| < 1/(z + 1)
(3) forp€{l,n—1}

= (1-57) o= () o e ]
yp+1‘—yp —p+T _ayp yp a(p+1‘)

— 6K (§>3 [y,,+a(p1+r)] ‘a(p+f)2(1p+r+ 1)

Proof. The proof is left to the reader.

Let us define {o,, p € {0,...,n}}, by 0,=|p,/ (p+1)*. Then we have
the following:

Proposition 2.5.6. Assuming 8 small enough, o,< (p+7)"* for
every p in {0,...,, n}.

Proof. The proof is recursive and left to the reader. From that
proposition we deduce

< O, < 1
S+ S0
so that
1 1
U —
? alp+r)| T (p+0)”

We now reach the end of the proof. From ¢, , =t, —¢&—at} + (e, t, + x§)
and |F(e, )| < K|y —xF]| (¢ + (y — xF)*) we deduce for p > 1

3 3
t t
t,—aty + K (1, + ﬁp iy ol

2
>, 20, —at—K
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if we denote by {v,} the sequence {v,} obtained for (¢,v)=(1,0) and {v, }
the sequence obtained for (#, v) = (1, 1) we have therefore

vl >t

+>1t,> v, forevery p, 0K pgn

Hence, applying Proposition 2.5.6 to the sequences {o,} and {0, }
associated with {v,} and {v,} we obtain

1

t — for every p, oL p«nm
* " a(p+7) y P SPs

1
<
S

which proves Lemma 2.5.1(1).
The proof of Lemma 2.5.1(2), which is quite similar, is left to the
reader.

APPENDIX 3.2.1: PRELIMINARY RESULT

For any x, in [p,(x¥ + B/(log B)*), x& + B/(logB)*] we define the
sequence {x,, n € N} by x,.,=9,(x,). And for any X, in [x,, x5 + f] we
define {X,,n € N} by X,.; = ¢o(X,). Then we have the following:

Lemma 3.2.3. For § small enough there is some N & N such that for
every nEN, n> N:

2 1
X, — <
|xn xn| x aﬂ(logﬁ)z (n+ 1)3/2

Proof.  Since x,> ¢o(x¥ + B/(log B)*) we have x,>x& + §/2(log )’
for f# small enough, so that if we set 7= 1/a(x, —x¥), 1 < 1< 2(log 8)*/ap.
From Lemma 2.5.2 we have

1 1

n+t n+rt

1 1 1
| X, — X, | < izt 7t
(n+1) (n+1) a

where 7/ = 1/a(xj — x;). Hence

. < 2 , T
| X, — %, < o+ 1)3/2 + a(n + 1)2
so that
. 2 , | 2(log B)*
o1 AT |0 1y
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For f small enough, af(log 8)* < 1/2 and if we choose N > (16/a”)(log 8)®
we have for n > N

2 1
X —x |<
1 =5l < Bog B i 1)

Proof of Lemma 3.2.1. (a) First, we assume that for some p < n

. " p
fO(Kn)m |:x0 !x(;k + (logﬂ)z ] + 0
Let
_ g _k
kO_Sup qe{ }f(Kn)ml:XO’xo+(10gﬁ)2:|$®§
and

ki, =sup{g € {0,..., n}, f§(K,) O [x§, x§ + B| # B}
We assume that k, > N (N is defined in Lemma 3.2.2).
Proposition 3.2.4. For 8 small enough k, — k, > (log §)*/4ap.

Proof. We set | =inf{x,x € ft(K,)}. From the definition of k, we
have f,(I) > x# + B so that for 8 small enough x& + 8> [ > x5 +f — 2af* >
x& + /2. From the definition of k, we have

B

k() K xf + ——
Do (D) < x§ (logﬁ)z

From Lemma 2.5.2, we have

1 1

kl—kol ok <
A s as | I (o

where 7= 1/a(l — x¥).
Therefore

1 1 < B
alk,—ko+1)  (ky—ko+17)"7 ~ (log f)?

so that for § small enough k, — k, + t > (log #)*/2ap and, as 7 < 2/af (since
I> x¥ 4+ f/2), we have for f small enough k, — k, > (log 8)*/4aB. N

Proposition 3.2.5. f*(K,)c [x¥, x& + f].
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Proof. We set

re= SUp X and r,= sup X
XEFXK ) xeff1Ky)

For every j in {l,.,k; ~ko}, fX(ry) > x¥ + B. Indeed, assume that for
some j in {l,..., k; — kq} '

fl(§0+j(ro) <xf+B

Then, since, from the definition of k,,

p
su x>xf+—rs
xef{gog(x,,) ¢ (log B)*

we have A(f%*/(K)) < B — B/(log B)*. On the other hand, since A(ft(K,)) >
B—B/(ogB)* and fPP(x)>1 on [x§ 1] we have A(fP(K,))>
B — B/(log B)*. A contradiction. Assume now that f§(K,) is not contained in
[xF, xF + B]. Then ry > xF + B. Since f{(x) > 1/(1 —af)® on [x§ +5,1]
and fXoH(r)> x¥ + B for every j 0<j<k, —ky we have ro—x)<
(1— aﬁ)z(kl_ko)‘

From Proposition 3.2.4 we have then r,—xF < (1 — af)1°e#"/2% 5o
that for B small enough r, — xF¥ < f thus contradicting the initial assumption.
Therefore f*(K,) = [x#, x¥ +4]. 1

Now we consider the sets f1(K,), k, << n.

Proposition 3.2.6. There is some p > 1 (which does not depend on
n) such that for n > 1>k,

Af BN <"

Proof. For n>1>k,, fAK,)O [xE x¥ +B/(logB)*]=@ from the
definition of k,. If we set p = f{(x¥ + B/(log B)*) > 1 we have f{V(x) >p
on fiK, for every I, ko<I<n  Therefore A(f}(K,))<
pIASIE ) <P

We now consider the sets f5(K,,), 0 < /< k,. We define for 0 <I<k, a
sequence {K’, 1€ 10,..., ky} of subsets as follows:

Kh = fi(K,)
K7 = fy(KY)

Then we have the following:
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Proposition 3.2.7. For every / in {0,..., ky}, either

=fyK, or sup x < inf p

xekK! vefl(&y)

Proof. The proof is recursive, using the monotonicity of ¢, and v, it
is left to the reader.
Now we compare the Lebesgue measures of f5(K,) and K’

Proposition 3.2.8. For every [, 0 /< k,

Af5(K,)) SAK)

Proof. Let | be any integer in {0,..,k,— 1}. If K'=f}(K,) then
K" = fo(K") = f5"1(K,) so that

MK MfKL)

MK AT KL)

if not, then sup, e x <infyesig, % Since K* = f(k,) < [x5, x§ + B], we
have also

K'c [xf, xF + B

Then, we use Lemma 2.5.3 and we get sup, ./ (x) < inf Efz &n SO ’(x) As
ME"™ ) < supyepe/§(x) - AK)  and  A(S3TK,)) 2 inficp ) S5 () -
A(fY(K,) we have then

MED K,
KD 7 K,

so that, as /%X ) = K*°, we have for every /, 0 << kq,

Afo&))<AK) 1
Now we majorize A(K").

Proposition 3.2.9. For every [, 0/ <k,—N (N is defined in
Lemma 3.2.1),
2 1

ap(log f)° (ko — 1+ 1)**
Proof. (a) We set [, = inf,.xk, x. From the definition of k,, we have

x¥ <1, < x¥ 4 B/(log B)*. As K* < [xF, x¥F + B] (see Proposition 3.2.5) we
have

ME') <

xF<ly<ro<xf+p
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Therefore, we can use Lemma 3.2.3 and we get

2 1

< CRtog By =TT 1

for every I, 0KI<k,—N 1

Now we prove Lemma 3.2.1 under the preceding assumptions:

(1) Forsomek&N,  f&K,)N [xg",xg“ #=

5
* log By’ ]
(2) k>N

As in the proof of Lemma 3.1.3, we have for (a, b) in K2

)@

18 ) Py )

<20 S 13-z

where L,= sup | £ ()]

x&[xg,1]

we have 30\ A(fH(K,)) <N + 1. We deduce from Proposition 3.2.8 and
Proposition 3.2.9

kog—N— w0 1 4
pgo KD < gy 777 < iy
and from Proposition 3.2.6 we have
N-1 [ee] 1
S ASBED< Y <t
p=kg k=0 P
Therefore
()@ ’ p 4
'“’g i(fﬁ)‘”(b) <L v ST A

(b) Assume now that there is some k€N such that fi(K)M
[x&, x§ + B/(log f)*] # & but ky < N. Then we no longer need Proposition
3.2.9 and we have

’1 (fo)(”(a)
[(BRIO]

z WAENT S A, ))E

P=ko+1

<L, 3N+1+—E——§
p~—1
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(c) Assume that for every p, 0<p<n, [fHEK,)O[xF, x§+
B/(logB)*1=2. We set p=f{"(x§+p/(logh)’)> 1. For every p,
0< p<n, infyepp,y S {V(x) > p. Then by the same proof we already used in
Lemma 3.1.3 we have

(0" @) \ Lop
1 <
\%ngwm p—1
(d) We set
Lyp p 4 )
= —_—— = A
A = sup p—l’LO(N+1+p~1+a,B(logﬁ)2 and p =exp

We have then for every n € N and every component of E, except I,

1_U@
s <o <’ "

APPENDIX 4.1.5: PROOF OF LEMMA 4.1.5

We define centered k cylinders as follows: for every kK € N for every
(i gorees Bgyeems ) € {0, 1}FHY, VR i) = {F€ {0, 1}% j, =1, for every p,
—k < p < k}. Then we have the following:

Lemma 4.1.6. The measure Ie(Vf_p, ;,) of any given centered p

cylinder is a continuous function of ¢ on ]0, ¢,[. That result was proved by
Dobrushin? for potentials such as ours. To every C° function g on [0, 1]
we associate a one parameter family of C° functions on {0,1}% {g,,
0<e¢<e,l thus defined: §,i)= g,r(i)) where r is the projection from
{0, 1}% onto {0, 1}™. We define on #°({0, 1}% R) the following C° norm:
||g~||c0:SuPTe(o,l)Zlg(r)‘-

We call a k-cylinder function any C° function which takes constant
values on centered k cylinders of {0, 1}% Then we have the following:

feey

Lemma 4.1.7. There is some sequence {g;, n € N} which converges
to &, in #°({0, 114 R), || |lce) such that for every n, §" is an n-cylinder
function.

Proof. The existence follows from the Stone—Weierstrass theorem.

Lemma 4.1.8. For every ¢, in ]0,¢,[, 7{8(g~£0) is a continuous
function of ¢ at ¢,.

This is a obvious consequence of Lemma 4.1.6 and Lemma 4.1.7.
We now prove Lemma 4.1.5.
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oo
K
o
o
%
0
K
o
o

\./x:.-\)&(”
J

Fig. 7. Successive images of an interval I in the region around xJ.

We have |7,(8,) — (#,,(25,)| <1#:(8;,) — e, (82l + 8. — &, lico and
from Lemma 4.1.3 and Lemma 4.1.8 we deduce that #7;(g,) is a continuous
function of &.

APPENDIX 4.2.1. PRELIMINARY RESULTS

(1) First we prove that there are some { > 0 and some ¢’ > 0 such that
(> p/e>G

Since A1) < 1y, INJS =@ and f(I) NJ # @, and from the definition of
Mo, We have

I Joo(ed — v xg =l

Let [ be the smallest integer such that fi(x¥—7)>x¥ +y. From
Proposition 7.2.2 we have [> [2/(ag)"/?] arctan[y(a/e,)"/?]. Therefore as
p>1 we have p\/e > where {= (2/\/a)arctan[y(a/e,)"*] for ¢, small
enough. Besides p < /4 2 < 2n/(ea)"/? so that p\/e < ¢’ where {' = 2n/\/a.

(2) Then we prove that A() < DA(f?(I)) for some D > 0.
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We have A(f2(D) =MD V() where € Jpfxf — ) x5 —7l.
Therefore A(f2(1) > AA)(2) V02V (02(x§ — 7). Assuming that £, <7y
and ay < 1 we deduce from Proposition 2.2.2 that for ¢, and y small enough
AI) < DA(f2(I)) for some D > 0.

(3) Lemma 4.2.8. For § and ¢, small enough and 7, < /2 there is
some L > 0 such that for every in ]0,¢,[ and any n < fe~"® we have the
following:

(a) For any x, in |xF + B/4, xF + /2] and any X, in lxq, x4 + 7,0,
the sequences {x,, 0< p<n} and {X,, 0 p<nj defined by x,, ;=@ (x,)
and %, , ; = ¢ (%,) satisfy | %, — x,| < (L/p?) | £, — x,| for every p, L < p< .

(b) For any %, in lxF — f/2, x0 — f/4] and any x, in |X, — #,, %,] the
sequences {x,, 0 < p<n} and {X,,0< p<n} defined by x, ;= f(x,) and
Xpi1=JSd%X,) satisfy (£, —x,| < (L/pz) | £y — x| for every p, 1 < p <

Proof of Lemma 4.2.8. We prove the first part and ieave the proof of
the second part to the reader. As ¢, is increasing an [0, 1] and X, > x, we
have for every p, 0 < p < n, x, > X,. Besides there is some ¢, € 1% 415 )ZPH[
such that £, —x,= (X, —x,, ) /&) As xF <x,., <xo<xF+p/2,
Kpry <Ky < Xo+ 1o < x§+f and /1 is increasing on [x§, x, + ] we have
FOE) > fP(x,, 1) Hence, setting S, = 1/TT5, /" (x;) we have X, —x, <
S,(Xy — xo) for every p, 1 < p<n.

Now we majorize §,.

Proposition 4.2.9. For f§ and g, small enough there is some L >0
such that §, < L/p’ for every p, I< p<n.

Proof. For every x in |xJ, x& + fi| we have

FOx) =1+ 2a(x—xF)+ S, x)  where

S0 =0 (2sP6D)| c—wt) e (2 r06)

£= &y e=0

+7 (ifm( *))

LB o

g= g

and £€ |xf, x[, 0 < ¢, <&, 0<¢g, <e& Therefore we have for some K > 0:
FEOO) 21+ 2a0—x§) — K(e + (x;—x,)*)

for every j, 1 < j < n.
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From Lemma 2.5.1 we have |x}f —x,— 1/a(j + )| < 1/(j + 7)** where
T = 1/a(x, — x§). Therefore for ¢, < 1/K we have

106> 0 -89 [1 - | (14 2) wher

a 1+K(@+1)

0=
1 —Key, a’®

so that for f and ¢, small enough,

oeen(ad Hon[ 2§ ()]

JE+T

where N = exp(—2BKeZ*) exp[—26¢(3/2)] exp[—4¢(2)] and ¢ denotes the
Riemann zeta function.

There is some B > 0 such that |log p — Y"7_; 1/jl < B. Hence S, < L/p’
for any L > (1/N)exp(2B) exp[(16/af) {(2)].

Lemma 4.2.8 follows from Proposition 4.2.9.

Proof of Lemma 4.2.17. We assume in what follows 3y < f < 4y.

Since p > &~ '/* we have for £, small enough p > 2([fe~/*] + 1). Hence we
can write

[Be~13] p—IBe~1A1—1

Z ASUD) = Z ASUD) + Zﬂ ASAD)
I=[Be13]+1
p—1
+ 2 AD)
I1=p-1Bs17

Since A(J) < 1o and A(f2(1)) < #,, we deduce from Lemma 4.2.8 that
2

S, M) < ) + )] B+,

where we denote by X, the expression

p—[8e~173] -1

> AU

I=18e 5] +1
Now we majorize X',. Assuming I is a closed interval, we set fi(I) = [x,, X,].
Then we deduce from Lemma 2.5.1

1 1
< ,
G+ 0 a1 0)

where [, = [Be 3] + 1

1
alx§ —x)

|1, = x|

and

822/36/3-4-5
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Hence, for ¢, small enough |x—x,|<(2/aB)e'’. We have also
|xg —x, 4| < (2/aB)e'”® (the proof is left to the reader). Therefore as f, is
increasing, we have for every g, [, <g< p—1ly, |x§F — x,| < (2/aB)e'".

On |xF — B, x¥ + B[ we have f(x)=x + ¢ +a(x —xF)* + r(e, x) where
(e, )| < K'{{x —x¥|® + ¢ |x—x¥|} with some K’'>0 which does not
depend on f. Then we have the following:

Proposition 4.2.10. For f < 1/2K" and every point x which satisfies
for some n € N | f(x) — x| < B for every j, 0 < j < n, we have

fi(x)>x+%foreveryj, 0<j<n

Proof. The proof is recursive. It is left to the reader

Proposition 4.2.11. There is some g € N such that f{(x;) > xg +
(2/ap) &', The proof is left to the reader.

We set [, =inflg €N, fi(x;) > x§f + (2/ap)e'’}. Then we have the
following:

Proposition 4.2.12. X <Y b A(SUD)).
Proof. We have |[f27"(x,—x{)| < (2/af)e"® and fovh(x,) >

x¥ + (2/aB)e'. As f, is increasing, we have therefore p — [, < [, + [, so that
lo+1)

< Y Ay 1

g=Ip+1

We assume ¢, < f%%.

Proposition 4.2.13. If ¢, is chosen small enough, we have for every
g in 10, ¢,
(1) () > Lon Jxi + 6, xF +
@) fPE) < Lon Jxf —px§ — e’
(3) |fP(x)— 1< 8ae?? on [xF —26*°, xF + 26*3]

The proof is left to the reader.

We recall that f9(I) = [x,, X,]. We set [, =sup{g €N, x, < x + ¢}
and [;=sup{g € N, £, <xF —¢*’}. We have for ¢, small enough [, < /; <
[, <Ily+1 so that

I3 I C g+l
Z,< ; 1/1(f‘§(f)) + _IZ lfl(f‘i(f))Jr IZI MSfUD)

Proposition 4.2.14. For ¢; small enough, we have for every ¢ in
10, &4
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I3

O Y A<

g=lg+1

e 327L
2 MSIUD) <
@) qZIZZH (feD) Ja p"

Proof. (1) For every gq, l,<q<ly, fUDcx¥—B, x¥—e.
Therefore Y 5_ ,H/l(f"(l)) (I, — ) A(f(I)). From Lemmad.2.5 we
deduce A(f(I)) < (1/13) A(I). Hence

I3

> A< bbia

g=1Ilg+1

(L is defined in Lemma 4.2.8)

AS))

From Proposition 4.2.10 we have

(I, —1,)e 2¢'7 €
x(;k 2/3>x13>x10+ 320 >'x(;k_ a,B +(l3_10)7
so that, for &, small enough I/, — [, <4e~?3/aB. And as [, > fe="3/2 we
have then

I3
> M) < Ll(l)
g=1lg+1 |
(2) For every q, I, <q<Il,+1,, fUI)c |x¥ +e*? xF+pB[. From
Proposition 4.2.13 we have then l(f"“([)) > A SfUD) for every g, I, <g <
l, + I so that

lo+11

O MU KUy + 1= L) AT D) < (o + 1) AF27 D)

g=1+1

As Iy + 1, > p— I, we deduce from Lemma 4.2.8

L
AN < ———5 A(F2U
so that
g+l l + 11
> MUD) S = LAUD)
I+1 ( 0 11)
One easily shows, using Proposition 2.2.2, that for ¢, small enough

T g1 and p—(lo-kll)>—’§—s‘”3
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Therefore

lo+1h

A< f —= = LA(f2)

g=1l+1
since ¢, < 7% 1
Proposition 4.2.15. For ¢, small enough we have

)

DOASUD) < 128LA(f2(I))  forevery gin 0, &4

g=Il3+1

Proof. For ¢, small enough, we have
SUD < [xF — 267, xF + 26" | forevery g, [, < g < [,

(the proof is left to the reader).
From Proposition 4.2.13 we have then

i AU < A(fl 2(/3)) [(1+ 8ag*?)s=" — 1]

g=13+1
From Proposition 2.2.2 we deduce I, — I, < 4¢ ™" for ¢, small enough.
We have f{’(xl,)> 1 (the proof is left to the reader). Therefore
SPx) > 1on fUI) for every ¢, 1, < g < I, + [, so that

i AMSUD) < Be™ P A D) < 128LA(/2D)

I3+1

Using Propositions 4.2.14 and 4.2.15 and the second of the preliminary
results we prove Lemma 4.2.1:

pil ASYD) K CA(f2(I))  for g, small enough
iz

where

7L

C=

(14 D)+ 128L <1+

st
6ap’>  4\/q g

APPENDIX 4.2: PROOF OF LEMMA 4.2.2

We set C=[x;,xFf—y], T=[xf+nnx,) ad E=[0,x JU
1%5.., 1]. We have A(1)= (f)"(&) MK) for some € K. Hence, setting
&= Si(¢) for every j, 0 <j < p, we have A(I) = A(K) [T/ =, /1"(5)).
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Proposition 4.2.16. Let x be any point such that for some n € N:

(1) fix)€E
(2) fix)E CE for every j, 0K j< n

Then

n—1

[T rP0)>1

j=0

Proof. This is an obvious consequence of Proposition 2.2.2.

We now define two ordered sequences of integers {f
{t;, 1< g < N'} as follows:

1 <g< N} and

q°

(1) Foreverygin {1,..,N},0<1,<p, & _,€Eand{, €CE (except
of course if £, =0).

(2) For every g in {L.,N'} 0<<p, & ECE and ét;e E
{except if ¢, =0).
(3) Those sequences are maximal.

Then [N —N'[< 1 and if we set A ={/, 0<j< p, {E E}.

Proposition 4.2.17:

(1) IfICE, (ff)(l)(é) 5 peard4
(2) WINCE#@, (SDV(O) > 24 (f1 M)V (E,).

Proof. (1) Assume N = N'. Then we have
0K, << <ty <th<p

so that

UHOO=UHU@ [T N [ e
T ()

From Proposition 4.2.16 we have then

UDVO > U@ Ve [T (),
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’
Ly,

Since f{"(x) =2 on the subset E and card A = p — £ + £, + Y 0| ¢
we have then (f2) V(&) > 2°*"44, If N’ = N + 1, the proof is similar.

g+1 ™"
(2) The proof is similar and left to the reader.

For every x&€C, we define &{(x)=sup{geN, Vje€ {0,.,q},
Si(x)€ C}. Similarly for every x in T we define &(x)=sup{g€ N,
G € (0,04} fi(x) € T

Proposition 4.2.18. There is some 0 < G < [ such that for every ¢ in
10, &, and any intervals I and K satisfying the assumptions of Lemma 4.2.2

card 4

—_—>G
s—card 4 >

Proof. From Proposition 2.2.2 there is some P& N such that for
every x in C, every y in T and every ¢ in |0, &4]

glr)<P and (<P

Therefore the number of successive iterates in any connected component of
CJ — E is majorized and since any orbit leaving the subset 7 must visit
region E before entering region C or region T, at least N’ points of the orbit
belong to E and at most 2N¥P to CJ— E. We have then card4 > N’ and
s —card 4 < 2NP.

Therefore, setting G = 1/4P (assuming N > 1) we have

card A

—> G
s—card A4 i

From Proposition 4.2.17 and 2.2.2 we have, setting

2

5 14 (f{;))(l)(é) > 52cardA

B (x5 —xl,O)Z’

From Proposition 4.2.18 we have card 4 > [G/(1 — G)|°. Therefore setting
a=G/(1 —G)and F=1/6 we have

MRS A F2—> 1
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APPENDIX 4.2.4: PROOF OF LEMMA 4.24

Proposition 4.2.19. For every n € N, every ¢ in |0, ¢,] and every x
in CJ, we have

K’

1—2y

LIRS

Proof. This is an obvious consequent of Lemma 4.2.3.

Proposition 4.2.20. There is some 4 >0 such that A, (x) is
Lipschitz on CJ with Lipschitz constant A4 for every n € N and every ¢ in

10, &,4].
Proof. We have

h,, ()

L )

|hn,5(x) - hn,e(y)| < hn,s(x)

Hence, from Lemma 4.2.3 and Proposition 4.2.19 we have

K’

(e < x—y

)hn,s(x) - hn,e(y)| <

where 4 = e¥'a/(1 —2y) and @ = sup(2K’, 2(1 —e %)), 1

From that proposition, we deduce that for every ¢ in ]0,¢,] the
sequence {h, (x), n € N} is equicontinuous on CJ. Therefore {p, [(x), n € N}
is also equicontinuous on CJ.

We know from Lasota and Yorke'¥ that p, (x) converges to p(x) in
L. From that convergence, the continuity of the function P, and the equicon-
tinuity of the sequence {p, ,, n € N} on CJ, we deduce that p, , converges
uniformly to p, on CJ.

APPENDIX 4.2.6: PROOF OF LEMMA 4.2.6

First we prove the following:

Proposition 4.2.21. For every nE€N and every &€ ]0,¢,
w02t 1(1/2), 021/ 2)])) = {[1/2, w, © 03(1/2)]).

The proof is recursive and founded on the invariance of u,. It is left to
the reader.
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Proposition 4.2.22. For ¢, small enough we have
B 1
sup{n, o 7(1/2) > x4 > @ for every ¢ € 10, g4]

The proof is left to the reader.

Proposition 4.2.23. For every ¢ in ]0,¢,[ there is some p(e) €N,
such that

1
W 20)< | e |
) wd[1/2y,°02(1/2)]) < (as)'”
Proof. We have

[(1/ag)t/2] -1

> udleT(1/2) (YD) <

n=0
Besides for every n €N, u([o?7'(1/2), ¢%(1/2)]) > 0. Therefore, there is
some p(e) < [1/(ag)"?] such that p([p2@*}(1/2), 02°(1/2)]) < (ag)".
From Proposition 4.2.21 we have then g, ([1/2, w0 02®(1/2)]) < (ag)’*. §

We set

inl (v, 08(1/2) —1/2)=6
60, &l
From Proposition 4.2.22 we easily deduce that ¢>0. Then from
Proposition 4.2.23 we have inf,.q, p(x) < (1/6 (ag)"?), and from
Lemma 4.2.5, we have

e’ \/a

sup py(x) < é\/g where &= 3

xeCJ

Therefore we have for 7 < CJ

sup p(x) < Ve
xe ¥
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