
Journal of Statistical Physics, Vol. 36, Nos. 3/4, 1984 

Continuity of Type-I Intermitteney 
from a Measure-Theoretical Point of View 
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We study a simple dynamical system which displays a so-called "type-I inter- 
mittency" bifurcation. We determine the Bowen-Ruelle measure/~e and prove 
that the expectation Pe(g) of any continuous function g and the Kolmogoroff- 
Sinai entropy h~e ) are continuous functions of the bifurcation parameter e. 
Therefore the transition is continuous from a measure-theoretical point of view. 
Those results could be generalized to any similar dynamical system. 

KEY WORDS: Onset of turbulence; dynamical systems; bifurcations; 
invariant measures. 

1. INTRODUCTION 

It is now well known that  there are many different ways to turbulence in 
fluid systems. Among  them intermit tency stands out as one of the most 

interesting since it d isplays  a seemingly gradual  t ransi t ion to turbulence. 
Such a t ransi t ion has been observed in experiments on the Rayle igh-B~nard  
thermogravi ta t ional  instabi l i ty  in confined geometry b y  P. Berg6 and M. 
Dubois  (experiment on silicone oil with high values of  the Prandtl  
number (4)) and A. Libchaber  and J. Maurer  (experiment on liquid helium 4 
with small values of  the Prandt l  number  (5)) P. Berg~ and M. Dubois  observe 
the following sequence of bifurcat ions when the Rayle igh number  Ra is 
increased:  

(i) Firs t  s ta t ionary  convect ion sets in for Ra  = Ra 1. 

(ii) Then a t ime-dependent  monoper iodic  regime takes its place 
(Ra --- Ra2). 

(iii) For  still higher values of  the Rayleigh number  (Ra >~ Ra3), the 
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system undergoes a new transition (intermittency). The whole structure is 
randomly disrupted by bursts of turbulence; the periods of quiet 
monoperiodic regime become shorter and shorter as the Rayleigh number is 
increased up from Ra until convection becomes fully turbulent. 

In Libchaber and Maurer's experiment, the bifurcation scheme is 
slightly different: 

(i) Stationary convection sets in for Ra = Ra 1. 

(ii) For Ra = Ra 2 convection becomes monoperiodic with a low- 
frequency f l  probably associated with a varicose instability. 

(iii) For Ra = Ra 3 a new frequency f2 associated with transverse 
oscillations of the rolls appears in the spectrum, f l  and f2  are not commen- 
surate. 

(iv) For Ra/> Ra 4 the preceding biperiodic regime undergoes a tran- 
sition of the type described above (intermittency). 

Thus in both cases a continuous transition from a periodic or 
quasiperiodic regime to turbulent convection is observed. 

Such a transition also occurs in the Belousov-Zhabotinski chemical 
reaction as observed by Roux et al. ~6) The experiment is performed in a well- 
stirred tank; therefore no spatial structure can appear and the system's 
evolution is governed by the sole kinetic equations. That difference does not 
prevent the occurrence of a transition from an oscillatory regime to 
turbulence by intermittency when the flux of reacting products is increased. 
Therefore we may expect such a bifurcation to occur in model dynamical 
systems. Y. Pomeau and P. Manneville ~7) have devised such dynamical 
systems and called type-I intermittency the transition to chaos which occurs 
for a one-parameter family of order-preserving endomorphisms of S 1 when a 
stable periodic orbit vanishes. That vanishing occurs when the stable orbit 
collapses with a nearby unstable one of the same period. Such a bifurcation 
is structurally stable: nearby families for the relevant C r topology will 
undergo the same bifurcation. In what follows, we study a family 
{f~, e ~  ]ec,aa[}of nonsingular order-preserving C 3 endomorphisms of S 1 
with degree 2 displaying such a bifurcation. For e ~< 0 the endomorphisms 
possess a stable fixed point x* (see Fig. 1). The bifurcation takes place at 
e = 0 and leads to an Axiom A dynamical system (as defined by Z. Nitecki 
for endomorphisms of S 1 ~s)). 

Let x* be the location of the stable fixed point for e = 0. Then, the 
generic form of the endomorphism f~ will be near x* and for l el small 
enough 

f o ~ ( 2 )  , L(x)=x+a~ (x~ a > o  
2 
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Fig. 1. Bifurcation diagram. 

We take the precise form 

%(x)  = X*o + 
x - x *  + 

1 - a ( x  - x * )  

which enables explicit calculations (see Proposition 2.2 and Proposition 2.3). 
Far from x*, we shall also require for the sake of simplicity thatf~ have a 
constant derivative. 

In Section 2, we introduce our model and study its fundamental 
properties. We prove that for e > 0, the dynamical system is hyperbolic and 
investigate the consequences of that hyperbolic character on the structure of 
fundamental intervals. We also deduce from the local form of the mapf~ near 
x* some useful results about the orbits' behavior in that region. 

In Section 3, we study the relevant invariant measures. We prove that 
for e ~< 0, the relevant invariant measure is a Dirac measure. To do so, we 
prove by methods similar to Misiurewicz's (9) that almost every point belongs 
to the basin of the stable fixed point. 

In Section 4, we study the continuity of the bifurcation from a measure- 
theoretical point of view. We show that for e > 0 the absolutely continuous 
invariant measure is weakly continuous and prove that it converges to the 
Dirac measure 5*~ for the weak topology when e goes to zero. Those results 
imply that the expectation of any C o function continuously varies with e, 
though a bifurcation take place. We also prove the continuity of the entropy 
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h(&) of the invariant measure. Those results give a striking example of the 
importance of measure-theoretical aspects in the study of dynamical systems. 
The bifurcation undergone by our system is continuous from a measure- 
theoretical point of view, though it is discontinuous from a topological one. 
Moreover measure-theoretical properties give us a much more detailed 
picture of our dynamical system than the crude topological description does. 

The proof we give of the measure-theoretical continuity of the transition 
is mainly based on (1) the hyperbolicity of the system for e > 0 and (2) the 
local expression of the map near x*. We use the explicit form off~ only to 
prove the hyperbolicity and to obtain certain estimates we need (see 
Section 4.2). Therefore, we expect that every similar family of 
endomorphisms which displays a transition from a stable periodic orbit to an 
expanding regime will present the same property of continuity, of course 
more lengthy calculations would then be required to obtain estimates similar 
to those of Section 4.2. 

2. THE MODEL AND ITS BASIC PROPERTIES 

2.1. The Model 

In this section, we define the model we use in the sequel. Let x* be 
come real number in ]0, 1/2[, a, e d and e C some real numbers a > 0, 
~e < (3/4)x* and 0 > ec > sup{-(1/a),  - a x  .2, - (1 /2 ) ( a  + 1 - 3aXo* + 
2ax*2)}. 

For any e in ]e~, ed[ we define 

1 
XI'~= 4---a {1 § 3ax* - [(1 - -aXo*)  2 -t- 8a(x* - e ) ]  1/2 } 

1 
x2,~= ~ {1 + 3ax*o + [(1 -- aXo*) 2 + 8a(x*o - e)] ,/2} 

x3,~=Xo* + a  + - -  ] 

Then, we define a C O map f~ from the interval [0, 1] onto itself as follows 
(see Fig. 2): 

j~(x) = 2x on [0, xl, ~] 

xo* X -  Xo* + 6 
1 - -  a ( x  - -  x * )  on [x, ,~,  x2,~] 

f~(x) = 2x on [x2,o, 1/2] 

j~.(x) = 2 x -  1 on [1/2, 1] 
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Fig. 2. The m a p f  s (for e > 0). 

The definition of  ec and Ed ensures that 

0 < Xl, e < Xo #: < x3, e < X2, e < 1/2 

Notice that a = �89 and)~l)(x3,,) = 2. 
By a slight alteration of f ,  in neighborhoods of xl, , and x2,,, we 

transform j~, into a C 3 map f ,  on S 1. We proceed to that regularization as 
follows�9 We choose some real numbers b and e 0 < b < xl~ < c < x* such 
that for every e c in Ice, e[ f~(b) > c. Then we modify f ,  on [b, c] so as to 
obtain a C 3 map which satisfies 

(1) f~l) > 1 on ]b,x,,~[ 

(2)  1 ) f~ l )  ) ?(el) ) 0 o n  ]Xl,e, C[ (see Fig. 3) 

In the same way we choose some real numbers e and f ,  
x3, ~ < e < x2,~ < f < 1/2, such that for every e in ]ec, eel fXe) > f and we 
modifyf~ on [e,f] so as to obtain a C 3 map which satisfiesfC~ 1) > 2 on ]e,f[ 
(see Fig. 4). 

Moreover we proceed to the regularization so that the family 
{f~, e C ]ec, ed[ } satisfies the following properties: 

822/36/3 4-3 
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(1) If we call ~0~ the inverse map off~ from [0, 1] onto [0, 1/2] and ~,~ 
the inverse map from [0, 1] onto [1/2, 1], for every point x in $1, f~(x), 
O~(x), and f~2)(x) are C a functions of  the parameter e, while f ( J )  is a C 2 
function of 5. 

(2) There is some real number oo > 0 such that for every ~ in 
]e~, ~a[f(~l)(x) > co. Thereforef~ is a nonsingular map for every 8 in ]e~, ed[. 

Since we can choose c -  b a n d f -  e as small as we wish (for levi and e d 
small enough) and since the regularization has no other aim than ensuring 
the smoothness properties of the dynamical system, we shall no longer take 
account of it in what follows. 

The dynamical system thus obtained has for e ~ 0 a stable fixed point 
x* E ]x~, e, x2,~[. That fixed point vanishes for e > 0. In that parameter range, 
the system is actually expanding. Before proving it, we shall prove some 
useful equalities. Those equalities are derived from the way we define f~ in 
the region [xl,~, x2.~]. 

2.2. Some Useful Equalities 

Proposition 2.2.1. (p~(y) = x*  + (y -- x*  -- ~)/[ l +a(y- -x*)]  on 
the interval [fe(xl.~),fe(xz.3]. 

Proposition 2.2.2.  Let e be in J0, ed[ and x be any point in 
[xl,~,x2,~]. Let n C N be such thatf~(x)<~x2,~for anTi ,  O ~ j ~ n .  Then for 
any j,  O<<.j<<.n, 

I (1) f ~ ( x ) = x * +  tan jarctan(ae) / +arctan[IT) ( x - x g ) J  

+ a(f{(x) - x*) 
(2) (f~)( ')(x) = + a(x - -  x ~ )  2 

The proof  is recursive. It is left to the reader. 

2.3. Hyperbolicity of the Dynamical System for E > 0 

Theorem 2.3.  If ax* < 2/3 and ~ is small enough, then the 
dynamical system is expanding in the following sense: there is some d > 1 
and a continuous positive function F(e) on ]0, ed[ which does not vanish on 
that interval such that for any e in ]0, e~[ and any n ~ 

Inf(f~)(*~(x) > r(e)d "~/~ 
Sl 

The proof  is given in Appendix 2.3. 
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2.4. The Fundamental Intervals 

For any e in ]0, Sd[ we call fundamental interval of order k any 
connected closed subset Ik, ~ e which satisfies f~(Ik, {, e) = [0, 1 ] 
f= (io,..., ik_l) E {0, 1} k is the kneading sequence of  Ik, {,, e. It is thus 
defined: i, = 0 if and only iff~(Ik, {,, e) c [0, 1/2], i, = 1 otherwise. 

In this part, we derive from the hyperbolicity two results on 
fundamental intervals we shall use later: 

(i) First we give an upper bound for the Lebesgue measure of any 
fundamental interval (Proposit ion2.4.1).  [We shall denote by 2(A) the 
Lebesgue measure of the measurable set A.] 

(ii) Then we prove that the Lebesgue measure of any fundamental 
interval is a continuous function of s (Lemma 2.4.2). 

Proposition 2.4.1.  For any s in ]0, so[, any k ~ N, any fundamental 

interval Ik, {,, e, 2(lk, ~ ~) < [1/F(s)] d - k ~ .  

Proof. Since f~(Ik, /, e) = [0, 11, 

< 
In f s l ( f~J  1) 

Using Theorem 2.3 we have then 

1 d k ~  

Lemma 2.4.2.  There is some continuous function ;g on ]0, ed[ such 
that for any given e in ]0, ed[, 12(Ik, ~ e') -- 2(Ik, ~ e)l < Z(e) le' - e[ holds, 
for every k E  N, every kneading sequence {E {0, 1} k and any e' in some 
neighborhood of e. 

The proof is given in Appendix 2.4.2. 

2.5. The Nature of the Map near x~ and Its Consequences 

We derive from the nature of the map near x*  some results about the 
orbits of points in that region. 

Lemma 2.5.1.  We may choose some fl > 0 such that for e a small 
enough, we have the following: 

(1) For any x 0 in ]Xo*+fl/4, Xo*+fl/2[, any e in ]O,~d[, and any 
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n ~ N such that n ~]8--1/2 the sequence 
xp+l = r satisfies 

1 
xp-- Xo* a(p + r) ~< 

{xp, pC {0,...,n}} defined by 

1 
(P § r) 3/2 

where r = 1/a(Xo- x*). 
(2) For any x o in ]x*--f l /2 ,  x * - f l / 4 [ ,  any c in ]0, ca[, and any 

n E N such that n Efle -1/3, the sequence {xp, p ~ {0,..., n}} defined by 
xp+l = f,(xp) satisfies 

1 1 1 
x * - x p  a ( p + r ' )  ~ ( p + r ' )  3/2 where V'-a~,_Xo,t~o) 

The proof is given in Appendix 2.5.1. 
We extend this result to e = 0. 

Lemma 2.5.2. For fl small enough and any x o in ]x*,x* +fl[ the 
sequence {xn, n E N} defined by xn+ 1 = ~Oo(X,) satisfies 

1 1 where r - 1 Xn - -  X~o a(n + r) ~ (rt + z') 3/2 a(Xo--X*) 

for every n ~ N. 

The proof is the same as before, except that the Proposition 2.5.4 of 
Appendix 2.5.1 is now pointless. 

We shall also need in Appendix 3.2.1 the following result. 

Lemma A.5.3. For fl small enough and any r/in [x*, x* +fl]  

(1) f~2)(x) > 0 on [x*, t/] 

(2) sup f(ol)(x) <~ in f . f~ l ) (y )  
[x~,ttl [n,l/21 

The proof is left to the reader. 

3. INVARIANT MEASURES 

We require for an invariant measure/z~ to be physically meaningful that 
for every C O function g on S 1 and almost every point x 

lim 1 N@I 
N~oO - N  ~ g(f~(x))=t.t~(g) 

j=o 

Such measures are usually called Bowen-Ruelle measures. ~1~ 



330 Meunier 

In what follows we prove that for e in ]s~, 0[, the Dirac measure 6(x*) 
is our system's Bowen-Ruelle measure (Section 3.1), We extend that result 
to e = 0 ,  which requires some modifications of the preceding proof 
(Section 3.2). Then in Section 3.3, we state some well-known results about 
the Bowen-Ruelle measure of a hyperbolic system (such as ours for e in 
]0, ea~); we shall use those results in Section 3 to prove the weak continuity 
of the invariant measure and the continuity of its metric entropy. 

3.1. c < O  

When ec < ~ < 0, the map f~ has a linearly stable fixed point x*. S 1 is 
divided into two subsets: (1) the basin of x* which is an open set, and (2) an 
invariant cantor set C~. The Dirac measure concentrated at x~* is an 
invariant measure. We show in this part that it is the Bowen-Ruelle measure 
by proving that )~(C~)= 0 (Theorem 3.1) 

We first introduce some notations: 

(i) 2~ is the unstable fixed point lying in Ix*, 1/2[. 

(ii) I~ = ]0, 26[. 

(iii) J~ = ] 1/2, ~(~7~)[. 

For every n E N, we define E ,  = {x ~ Cs~ I~, f;,(x) ~_ J~ for every p 
O<~p<~n} (see Fig. 5). 

E ,  is the set of points, the n + 1 first iterates of which remain outside I t. 
{E~, n E N } is obviously a decreasing sequence of subsets and the Cantor set 
C~ may be defined as C~-- O,~NE, .  

We are going to prove (Lemma 3.1.4) that {2(R,), n E N} is majorized 
by a geometric sequence which converges to zero. The result ),(C~) = 0 is a 
direct consequence of that lemma. 

Before proving Lemma 3.1.4 we need some preliminary results. Let K,  
be any connected component of E~. Then, we have the following: 

Lemma 3.1,1. The map f ~ l ~  
f~(K~). 

The proof is inductive. 
We have also the following: 

is a diffeomorphism from K,  onto 

Proposition 3.1.2. f~(Kn\E.+l) is equal to either ~o~(J~) or VJ~(J~). 

Proof. The recursive proof is left to the reader. 

Lemma 3.1.3. There is some 6 > 1 such that for every n C IN, every 
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Fig. 5. Subsets  E~ for ~ < 0. 

connected component K n of E n and any point (a, b) in K 2 the following 
inequality holds: 

1 (fT)(1)(a) 

Proof. We set a=infcsl,J(~l)(x), a > 1, and L = s u p c j ~  [f(~Z)(x)l. 
Then 

(2) 
sup [(logf(e*))(1)[ ~ SUpcslIe[f ~ i] ~ L  
Cs11~ infcj~f~ 1) 

For a given n and given (a, b) in K2., 

log I I n-1 
(f~)~ (1) k (1) k (f~)(t)(b) ~< k=oST' logf~ ( f~(a))-- logf~ (f~(b))] 

Hence 

log I (fn)(1)(a) 
(f'~)~ l 

n--1 

- f (b)j 
k=O 
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From Proposition 3.1.1 we have I f '~(a)- f"(b) t  < 1. Hence for every k 
O <~ k <~ n 1, , - k  k , - k  k k - ]f~ ( f , ( a ) ) - f ,  ( f , ( b ) ) l <  1, which implies [ f , ( a ) -  
f~(b)[ ,  a ' - k ~  1. Therefore 

log l(f~)(1)(a)[ . - 1  1 
(f~)O)(b) ~< L k=0--V _ _ a  "-k 

and, setting 6 = e x p [ L / ( a -  1)], we have 

1 (fn)(1)(a) 
~ (fn)(1)(b) ~< ~5 II 

L e m m a  3 . 1 . 4 .  

P r o o f .  

and also 

There is some ~ > 0 such that for every n C N, 

2 (E ,+ , )  ~< (1 -- 0 2(E,)  

We have 

X(K,) i nf(fT)(1) ~< )~(f~(Kn) ) <~ 1 
1% 

2(f~(K, \E,+ 1) ~ 2(K,\En+ 1) slip (fgn)(l) 
Kn 

if we set { = inf{2(~os(d~) ), ~(~%(J8))}, we have from Proposition 3.1.2 

2(f~(K.\E.+ 1))/~ 

From inequalities 3.1.6 and 3.1.7, we deduce 

)~(Kn\En+ 1) >/ suPK,(fn)(1) 

From inequalities 3.1.5 and 3.1.8 we have then 

1 -- ~ infx ' ( fn)~ 2(K '~En+a)  - 1 )~(K,\E,+,) 
)~(Kn) 2(K,) 

From Lemma 3.1.3, we have then 

)~(Kn Cq En+ l) 
)4K.) 

(3.1.5) 

(3.1.6) 

(3.1.7) 

(3.1.8) 
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Thus setting ( =  ~/c~, we obtain 

~.(K, N En+l) ~ (1 - ~) 2(K,) 

and summing over connected components of E n 

< (1-  r | 

Theorem 3.1. 2(C~) = 0 for every e in ]c c, 0[. 

Proof.  For every n E N, C~ c E ,  and 2(C~) ~ 2(E,)  ~< (1 - ()" 2(E0). 
Therefore 2(C,) = 0 .  ] 

3.2.  e = O  

In this section, we extend the preceding results to ~ = 0 by proving that 
)~(C0)=0. The map f0 is not expanding on Ix*, 1] since f ~ l ) ( x * ) =  1. 
Therefore we must modify the preceding proof, which relied on the fact that 

f ( , l ) (x)  > a > 1 on [2~, 1] and we must now take into account the nature of 
the map near x*. 

As in Section 3.1, we consider the subsets E n. For every n, x* is the left 
end point of a particular connected component I n of E , .  It plays a special 
part since the map fo is expanding on every component of E n except I n. 
Besides In+l=~o0(I , )  (see Fig. 6). We now prove a result similar to 
Lemma 3.1.3: 

Lemma 3.2.1. There is some c~ > 1 such that for any n C IN, for any 
connected component K n of E n except I n, and for any point (a, b) in K ,  z, 

1 (fo)(')(a) 
~ (f~)(1)(b) ~ 

Proof .  We give the proof in Appendix 3.2.1. 
Then we consider the components I n and prove that their Lebesgue 

measure goes to zero when n goes to infinity. 

Lemma 3.2.2. There is some N o C N such that for n/> No 

2 

a(n - N  O + 1) 

Proof .  We know that I ,  = ~0g(I0). Therefore 2(In) goes to zero when n 
goes to infinity and for any given /] there is some N o such that 
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INo ~ [x*, Xo* + fl]. Then we apply Lemma 2.5.5 to the sequence {x,, n E N } 
defined by x 0 = sup{x, x E INo } and we get 

1 1 1 
"]'(IN~ ~ a(n + r~ + (n + r) 3/2' where r = a~.(iNo) 

Therefore, we have for fl small enough 

2 
2(IN~ <~ a(n + 1~ 

Now we prove the result we were aiming at and which is a consequence of 
the two preceding results: 

Theorem 3.2. 2(Co)=O. 

Proof. Let KNo+n be any component  of  ENo+n such that 
KNo+n~INo+n=O. From Lemma 3.2.1, we deduce, as in the proof of 
Lemma 3.1.4, 

2(KNo+,, ~ ENo+ n+ 1) ~ (1 -- G) 2(Kxo + n) 
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where  G = (1/3)inf{2(to o o ~Uo([0, x ' l ) ) ,  2(~,~([0, %*]))} < 1. Since 

"~(ENo+n+,)="~(INo+ n c')ENo+n+l)+ z....• "~(KNo+nOENo+n+') 
KNo+n 

KNo+n('~INo+n= 0 

we have  

X(E~0+.+,) ~ ~(g0+,,) + (1 - G)~(ENo+.) 

Using  L e m m a  3.2.2 we ob ta in  

"~'(ENo+n+ I) ~ - -  a(n + 1) 
+ (1 - G)A(ENo+n ) 

so tha t  

2 '~ '  (1 - o)p 
2(ENo+. ) <~ (1 --  G)"  A(Exo ) + - -  

a ;-- o n - p  

We have  for n > 1 

. - 5  ( l - - G )  p [./21 ( l - - G )  p . - 5  2 ~. 
x~ \~  ~- ~ '  ~< - -  (1 - G) p 

; =--~0 n - p p =-'0 n - p p = [,/'-51+ 1 n ;L3o 

. - 1  1 2 
+ (1 + G) "/2 \~  ~< + n(1 - G) "/2 

( T h r o u g h o u t  this  text  [a] denotes  the grea tes t  in teger  which  is lesser or equal  
to a . )  Therefore ,  we have  

4 2n 
~,(ENo+n ) ~ (1 --  G)"  2(Eteo) + ~ + a (1 - -  G) n/2 

W h e n  n goes to inf ini ty,  the r igh t -hand  side goes to zero.  And ,  since for 
every  n C N C o t E N 0 + ,  , we conc lude  tha t  2(C0)  = 0. | 

Therefore  the B o w e n - R u e l l e  mea su re  is for  e = 0, the D i r a c  measure  

~(x0*) 

3.3. ~ > 0  

F o r  e in ]0, ~d[ the m a p f ~  is expanding .  Such sys tems  have  been wide ly  
s tudied.  So we mere ly  s ta te  the resul ts  which  are useful to us: 

(1) The  sys tem has  one and on ly  one abso lu te ly  con t inuous  inva r i an t  
measure  a~. 
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(2) The density p~ of that invariant measure is a C ~ function on S ~ 
sincef~ is C 3. 

(3) On s u p ~ )  = {x C S 1, p~(x) 4= 0}, p~ is bounded far away from 
zero. 

(4) The metric enropy h ~ )  of  the invariant measure satisfies 

h ~ )  = /~( log  f(~ 1~) 

4. CONTINUITY OF THE INVARIANT MEASURE 

We have shown that for e ~< 0, the Ruelle-Bowen invariant measure is a 
Dirac measure. Its location, the stable fixed point x*, smoothly depends on e. 
Therefore, the Bowen-Ruelle measure is weakly continuous on ]e c, 0[. In 
this part, we prove that the invariant measure is continuous for the weak 
topology when e > 0 (Section 4.1). Then we prove the weak continuity at the 
bifurcation threshold e = 0 and conclude that the Bowen-Ruelle  measure is a 
continuous function of e on ]~ ,  ed[ for the weak topology (Section 4.2). We 
also prove the continuity of the Kolmogoroff-Sinai  entropy (Section 4.3). 

4.1. Weak Continuity of p. for ~ > 0 

In this section we prove 

Theorem 4.1. For any C O function g on [0, 1], the expectation ~ ( g )  
is a continuous function of e on ]0, ed[. 

We use symbolic dynamics related to the Markov partition /[0, 1/2], 
[ 1/2, 1 ] } to prove that result. ({0, 1 } ~, d) is a compact  space for the metric d 
thus defined: Fo_r (i, j-) ~ {0, 1 } ~ X 10, 1 } N let k = sup {n ~ N, Vp E N, p < n, 
ip = jp ) ,  then d ( i , j ) =  1/2 k. 

For every e in ]0, eel we define a map ~ from {0, 1} ~ onto [0, 1] by 
setting n~(i)= x, if [ i s  an itinerary of x, that is to say, if i n = [ f ~ ( x ) +  1/2] 
for every n E N. The map ~r~ is not one-to-one since pre-images of 1/2 have 
two itineraries. However the Lebesgue measure of this set is zero so we shall 
encounter no trouble. We prove the following: 

Lemma 4.1.1. n~is H61der continuous: 
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Proof. Assume d({, j ) =  1/2 k for some k ) 1. Then ~,(i-) and ~z~(f) lie 
in the same fundamental interval of order k - 1, so that from 2.4.1 we have 

i~z~({ ) _ ~z,(f) I < 1 d_(k ,).V~ <~ d x / ~  (d(~ f))(,ogd)/,og 2),/~ 
F(e)  

and this inequality still holds if d(i, j )  = 1. | 

Moreover the map ~: e ~ ~ from ]0, ed[ into ~~ i }~, [0, 1]) satisfies 
a local Lipschitz property: 

kernrna 4.1.2.  There is some continuous function ;~ on ]0, ed[ such 
that for every e o in ]0, ed[ , I ~ ( i ' )  - -  ~e0(T)[  < X ( e 0 ) [ ~  - -  e 0 l  O i l  a neighborhood 
V(e0) of c0. 

Proof. That result is nothing else than Lemma 2.4.2 under an other 

guise. 
To every C o function g on [0, 1] we associate a C o function ~ on 

{0, 1 }N thus defined g~({) = g o ~({) 

kemma 4.1.3.  ~ is continuous in e on ]0, ea[ for the C O norm. 
This is an obvious consequence of Lemma 4.1.2. We define a measure 

2~ on {0, 1 }N by setting 2~(g~)= 2(g) for every g in c~~ 1]). We define a 
potential {0~, k ~ ~} on {0, 1 }N as follows: 

Let ~ k  be the set {(j ..... j + k), j C IN}. For  every k E  N, we define a 
function ~ on C~k X {0, 1} k+l as follows: 

q>o(j; i0 ) = log f~fl o ~(al(io) ) 

and for k > 1 

k - q~( j  ..... j + k; i 0,..., ik) = log f ( e  1) o 7Ce o 0"k+ , ( i  0 , . . . ,  ik) 

-- log f~fl o ~ o ak(i o ..... ik_O 

where aj denotes the embedding from {0, 1 }J into {0, 11 n which associates to 
(i 0 ..... ij) the sequence [ o f  {0, 1} N thus defined: lp=ip for O ~ p ~ j ,  / p = 0  
for p > j.  Then ).~ is the Gibbs measure on {0, 1 } N associated tO the potential 

cb k { ~, k E  N} as was shown by O. Lanford. al)  ({0, 1}Z,d) is a compact  space 
for the metric d thus defined: for ( i , j )  C {0, 1 }z X {0, 1 }~, let k = sup{n C N, 
VpC Z, ]p] < n, ip = L } ,  then d ( i , f ) =  i /2  k. 

We define a shift-invariant potential k {0, 1} z {qJ~, k C N} on as follows: 
For  every k ~ N, we introduce Dk = {(j,..., j + k), j C Z} and we define 

a function qJ~ on Dk X {0, 1} k+l as follows: 

k �9 �9 qJ ~(j ..... j + k; i o ..... ik) = @k~(o,..., k; i o ..... ik) 
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The potential {~t~, k C N} is invariant under the shift automorphism on 
{0, 1 }z. Besides, there is some D > 0 such that for every k C LI and every e 
in ]0, ea[ 

k II gt~ll = sup gte(0,..., k; i o,..., ik) < D 
(io,..,,ik)E{O,1}k+l 

Moreover the potential decreases fast with increasing k: 

kemma 4.1.4.  For any e0 in ]0, ed[ there is some a > 0 and some 
B > 0 such that the following inequality holds on a neighborhood V(e0) of 

80~ 

k 11 q/~[[ e k~ < B 
k - 0  

Proo f .  The function log f C81o) is Lipschitz: 

I (" (,I Ix - ( 4 . 1 . 4 )  - f s o  (Y)I < logfs0 (x) log A8o Y l 

where 

supxl ['(2) I 
d 8  0 A - 

8o infs ~ f(~)] 
d 8 0 

We have d(ak(io, . . . ,  k ) ,  a k_ ~(i o ..... k - 1)) ~< 1/2 k. 
Lemma 4.1.1 we deduce 

Therefore, from 

Taking x = 7C8o(a(io,..., ik) ) and y = n~o(ak_l(io, . . . ,  k - 1)) in inequality 4.1.4 
we obtain 

so that 

I log f~81o ~ o nso(ak(i  o ..... ik) ) -- log a~ of(l) o 7"Ceo(O'k_ 1(/0 ..... [k-I ) ) !  

< As~176 2 ksl/2(l~176 

F(8o) 

A d ~/2 
II~goll < ~~ 2-ks~/2c'~176 F(eo) 

r co k(2-(~2/2)(l~176 we If we set a = 2 (8~n/~)(~~176 and B = 2Asod o ~ o  
have then on a neighborhood V(r of eo, ~ = 0  k II ~t~l[ ek~ < B. | 

d ~/2 _k~o/2(iogd/log2) 
I n~o(a,(io,..., k ) )  - n~(Gk_2 ( io , '" ,  k - 1))] < F ~ o  ) 2 
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We call ~ the shift-invariant Gibbs masure on {0, 1} z associated with 
the potential {~,~, k C ~J}. We define a shift-invariant measure fie on {0, 1} ~ 
by #~(#) = ~ ( #  o r) for every C o function # on {0, 1 } ~. 

Then we have the following: 

Lemma 4.1.5. fi~(~) is a C O function of e on ]0, e~[. 

We give the proof in Appendix 4.1.5. 
Then, since the absolutely continuous f~-invariant measure ~t~ on [0, 1] 

satisfies/~(g) = fi~(g~) for every C o function g on [0, 1 ], Theorem 4.1 follows 
immediately. 

4.2.  Continuity of the Invariant Measure at the Bifurcation 
Threshold E -- 0 

4.2.1. Preliminary Study. In this section, we show that far from x* 
the invariant density p~ is well behaved (Theorem 4.2. i). 

Theorem 4.2.1. For any 7 > 0 small enough, there exists some 
K'  ) 0 such that for e d small enough, the density p~ of the invariant measure 
satisfies 

p~(x) ~ e K'Ix-yl pe(y) 

for every e in ]0, ed[ and every x and y in Csl]x*-y ,  x*+7[.  An 
immediate consequence of the result is that p~ does not vanish. 

The proof of Theorem 4.2.1 is as follows. We first prove two technical 
results (Lemma 4.2.1 and Lemma 4.2.2). From those results, we deduce that 
the nth iterate of the Lebesgue measure h,,~ is well behaved far from x0*. 
Then Lemma 4.2.1 enables us to take the limit thus proving Theorem 4.2.1. 

kemma 4.2.1. For e d and 7 small enough, there exists some real 
number C > 1 such that for every e in ]0, ed[ and any interval I satisfying 
the following conditions: 

(1) 2(1) ~< r/o where r/o = a7 z. 

(2) s n J ~ : O  (J= ]xo*-~,,Xo* + vD. 
(3) For some p > l ,  f ~ ( I ) ~ J = O  and for every q, l<~q<p 

fq( / )  ~ J 4: 0.  

(4) 2(f~(I))  ~< r/0. 

We have 
p--1 

~-' 2(ft,(I)) ~< C2(f~(I)) 
t = l  

We give the proof in Appendix 4.2.1. 
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I_emma 4.2.2.  There are some F > 0 and some a > 0 such that for 
every c in ]0, ea[, every interval I which satisfies the following properties: 

(1) 2(I)  ~ q0 

(2) I ~ C J  

and every interval K such tha t f~ (K)  = I for s o m e p  ~ N we have 

2(K) ~ F2-~s)~(i)  

where s = card {j, 0 ~ j < p, f~(K) (3 J 4= 0 and f{+ ' (K) ~ J = O } + card {j, 
0 <~ j <~ p, f~(K) ~ J = 0 }. 

We give the proof in Appendix 4.2.2. 
For every x in [0, 1], let Zn. x = {y , f~ (y )  = x }  be the set of order n pre- 

images of x. Then card X., x = 2 n. We define a map ~0., x from X.,x into 
{0, 1}" by ~0.:(y)  = (i 0 ..... i . -1)  if and only if iq = [ f~(y)  + 1/2] for every q 
0 ~< q < n, ~0., x is obviously one-to-one and onto. If h . : ( x )  is the density of 
the nth iterate of the Lebesgue measure, we have from the expression of the 
Perron-Frobenius  operator 

1 
h. o(x)= 

' z~z.,x (f~)(l)(z) 

Then we have the following: 

L e m m a  4 .2 .3 .  There is some K ' >  0 such that for every n E N, 
every e in ]0, ea[ and every x and y in CJ 

h.,~(x) <~ e K'v~-y) h~,~(y) 

ProoL (a) Assume that I x - y ] < r / o .  Let z E X . ,  x and zTEZn,y be 
such that ~0.,x(z ) = ~0.,y(z'). Assuming x < y, we set I = Ix, y], K = [z, s 
and 

M--- sup 
o < g< gd 

,2, I SUpx~s, [f~ (x)] 

infx ~sl f~l)(x) 

Then 

( f n ) ( 1 ) ( Z ' )  

n - - 1  

~ M  ~ [f~(z)--f~(y)l 
j = O  



Continuity of Type-I Intermittency 341 

We define two sequences {J/, 1 ~ l ~< s} and {j[, 1 ~< t 4 s} as follows: For 
every l, 1 ~ l ~ s, 

f~(K) ~ J #  e and f ~ -  I(K) ~ J =  0 

f{;(K) ~ S r  0 and f{;+l(K) mJ  = 0 

f'~(K) ~ J = O for every t, j[ < t < Jr +1 

Then 0 ~<jl < J~ < "'" < Js < J~, so that 

log I (f:)",(z) l ''-1 '~ I L z q= 1 j= jq  

s--1 Jq+l- -  1 n--1 ) 

+ ~_ ~ 2(f{(K))+ ~ 2(f{)) 
q= 1 j=j~+ 1 j = j s  + 1 

As t x -  Yl ~ t/o, we deduce from Lemma 4.2.2 

j l - - I  S--1 Jq+l- -  1 n--1 

E 2(f{(K))+ ~ Z 2(fJ(K))+ E s 
j = O  q = I  j - - j q + l  j= . / s+  1 

< F l x -  y I ~ 2-"t 
t - O  

From Lemma 4.2.1 we have for every q, 1 ~< q ~< s 
& 

a(f{(K)) <~ C~(f{a + I(K)) 
J =Jq 

Setting 

" J K J+ sq=card{j ,O~j~jq , f~(  ) n g # = O a n d f ~  * ( K ) < J = O }  

+ card{j, 0 <<-J<~J[s + 1,f~(K) < J =  0} 

we have then from Lemma 4.2.2. 

2(f{  ~+ ~(K)) ~ Ix -- Yl Fe-<~s" 

Therefore 

log I (f~)(~)(z) I 
(f~)(')(z) 

and 

gF[x - -  y[ 
1 - - 2  - 4  

+ MC Ix - y[ ~ e -"sq 
q = l  

(f~')(')(z) 
(fT)O)(z) 4 e K'lx-yl, where K' -- MF(1 + C) 

1 - 2 - "  

822/36/3-4-4 
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Therefore, 
1 1 

(fT)("(z) ~ eK'l~-'l ~ (f~)('(z') ZE~,n, x ZEY-n,y 

and we have h r .< ~K'lx-yl ~,~, , . .~e h~,~(y) when lx - y[ <~ r/o. 

(b) Assume now that t x - y l  > q0. Always assuming y > x ,  we 
introduce the sequence {xi, i C {0 .... [ ( y -  x)/qo ] - 2 } }  defined by 

X o ~ X  

Xi+l -'~-Xi + ~0 

x[(y_x)/no] = y 

we have then 

hn,~(x) 
hn, ~(Y) 

Lemma 4.2.4.  
S ~ to the density p~(x) 

ProoL We give 
Theorem 4.2.1 is 

foreveryi ,  0~<i~< [ - - - ~ o  ] Y - X  - 2  

[(y-x)/,ol-1 h,,~(xi) 
H hn e(Xi+l ) <~eK'l'-xl | 
i = 0  

= ( l /N)  ~ . = 0  h.,~(x) converges uniformly on PN, e(X) N- 1 
of the invariant measure g ,  when N ~ oo. 

the proof in Appendix 4.2.4. 
an obvious consequence of Lemmas 4.2.3 and 4.2.4. 

4.2.2. Behavior of the Density Pc when e Goes to Zero. In this 
section we prove the following: 

Theorem 4.2.2. Let ~ "  be any compact set such that x* ~ ~,~ then 
p~ converges uniformly to zero on ~ when e -* 0. 

That theorem shows that when e --, 0 the invariant measure ~ converges 
to the Dirac measure ~x; for the weak topology on the space of measures. 
Everywhere in this section e is positive. 

Proposition 4.2.5. There is some K ' >  0 such that for % small 
enough and for every e in ]0, %[, SUpx~xp~(x) ( e K' �9 in fx~p~(x  ) 

Proof. It is an obvious consequence of Theorem 4.2.1. 

Lemma 4.2.6. There is some 3 > 0 such that for every ea in ]0, ca[ 
infx~v.pe(x) < (1/~))(a~) 1/2 . 

We give the proof in Appendix 4.2.6. 

kemma 4.2.7. There is some ~ > 0 such that 

sup p~(x) < ~e 1/2 for every e ~ ]0, ca[ 

This is an obvious consequence of Proposition4.2.5 and Lemma4.2.6.  
Theorem 4.2.2 is an immediate consequence of that lemma. Theorem 4.2.2 
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implies that the expectation ~t,(g) of any C O function g o n  S 1 converges to 
g(x*) when c goes to zero with positive values. Since p~(g) is a continuous 
function of ~ on ]0, ca[ (Theorem 4.1) and ]Co, 0[ (then/l~(g) * = g(x~ )) it is 
continuous on ]cr ca[. Therefore the invariant measure is weakly continuous 
on ]e~, ca[ (although a bifurcation occurs at e = 0). 

4.3. Continuity of the Kolmogoroff-Sinai Entropy h(p=) 
In this section we prove the following: 

Theorem 4.3. The K-S  entropy h ~ , )  of the Bowen-Ruelle measure 
p~ is a continuous function of c on ]cr ca[. 

Lemma 4.3.1. h(g~) is a C O function of e on [0, ~a[- 

Proof. For any given Co and c in ]0, ~a[ we have 

(1) 
ig j log  f~l!) _ g~o(log f~o))l ~< It log f ~ )  - log f~o Itco 

+ I/l~(l~ f~lo)) -/ /eo(l~ a~of(')]l,, 

Since logf~  ~ and #~(logf")~ are continuous functions of e (see J ~ 0  ! 

Theorem4.2.1),  p~(logf~ ~)) is also a C o function of c. As h(g~)= 
g~(logf~a)) ~3) the K-S  entropy is continuous on ]0, ca[. | 

Lemma 4.3.2. lim~0,~>0 h(u~)= 0. 

Proof. We have h(~) = fcs (l~ dx + f j  (log f~l ' (x))  
p~(x)dx where J = ] x * - y ,  x * + y [ .  We set a---sup{[llogfC~l)[[c0, 

(~) . Lemma c E  0, c Then h~  <a  (CJ + lo f x x dx From ] a[}. , ~) / l ~  ) f s (  g ~ ( ))p~( ) 
4.2.6 we have/.t~(CJ) < ~V/C. As f~l)(x) = (1 + ae)/(1 - a ( x - x * ) )  2 near x* 
we have then 

h(/2~) < ar + f's log(l + a~)pe(x) dx 

+ 2 Jj Ilog(1 - a(x - x0*))t p,(x) & 

Hence for y small enough 

h(p,) < 2a~x/'s + 2ay + 2ae, 

We have then for every 7 > 0 small enough lim~o,~> 0 h ~ )  < 2a~. Therefore 
lim~_~0,~> o h(p~) = 0. II 

For e G ]e c 0[ the Bowen-Ruelle measure is the Dirac measure 6 * so x ~  ~ 

that h ~ ) = 0  on ]ec,0[. Therefore h(/2~) is continuous at e = 0 .  (From 
Lemma 4.3.2) which proves the continuity of h (~)  on ]ec, ca[. 



344 Meunier 

5. CONCLUSION 

We now give a brief physical interpretation of those result. Imagine a 
physical experiment explained by type-I intermittency. Then the measured 
mean value of any physical quantity will continuously evolve with the 
control parameter. Besides, as soon as the threshold is crossed, the system 
will be stochastic but as the rate of stochasticity (measured by h ~ ) )  
increases up from zero with the control parameter it will take a very long 
time to observe any sensitive dependence on initial conditions. 
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APPENDIX 2.3: PROOF OF THE HYPERBOLIClTY {THEOREM 2.3) 

We set L , = s u p { q E N ,  VpE{0  ..... q}f~(xl,~)~x3,~} and I~= 
P sup{q~[N, VpE{0  ..... q}, f~(xl,~)~x<~ }, where x<~=x* +(1/a)[1--  

(l + ae) 1/2] satisfies tl) f~l) f~ (x4,~)= 1. is increasing and smaller than 2 
outside Ix1, ~, x3,~]. Taking into account the nature of the regularization, we 
have then 

I e (1) i n f ( S ~ ) ~  ( f~)  (xl,~) 

f(1) is increasing and smaller than 1 on [Xl.c, x4.,]; it is greater than 1 
outside this region. Therefore infs,(fqJl)(x) >/(fI,~)~l)(xl,~) for every q such 
that q < L~. Hence, for every n C IN, we have 

(ffg)(1)(X) > ( ( f L e ) ( 1 ) ( X l , e ) ) [ n / L e ] ( f l ~ ) ( 1 ) ( X l , ~ )  

Proposition 2.3.1. For e d small enough and axo* < 2/3 there is some 
number a >* 1 such that for any e in ]0, Ca[, 

(f~)(l'(X,,~) > a 

Proof. From the definition of I~, we have 

fL6(Xl,3 > rPe(X3,e) 
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From Proposition 2.2.1 we have then 

+ a(~pe(X3,e) - -  X0*) 2 
(fg)"'(x,,O > 

+ a(xl ,e- -Xo*)  2 

Hence for ed small enough and some a > 1, 

( f ~ 9 ( ' ) ( X l , e ) / ~  a > 1 II 

From Proposition 2.3.1 we deduce 

re (1) n/Le ]0, in f ( fn)~ > {(fe ) (xl,~)} F(e) for e C ~d[ 
s 

where F(~) = (f{9(1)(x,,,)/(fr~@l)(xl,~) is a continuous positive 
nonvanishing function. 

Proposition 2.a .a .  For  e4- small enough, there is some number d > 1 
such t h a t  {(f~e)(l)(Xl,e)}l/Le > d Ve for any e in ]0, ca[. 

Proof. 

L e =  

We first estimate L r From Proposition 2.2.2 we have 

arctan[(a/e)'/2(x3,e- x*)]  - arctan[(a/e)l/2(xl,~- x*)]  

arctan(ae) 1/2 

So that for ed small enough L , <  27r/ae 1/2 for e in ]0, ed[. F rom 
Proposition 2.3.1 we have log((f~@l)(xl ,e))  > log a. Therefore, setting 
d = a 'f~/2~z ) 1, we have 

{(f{e)(')(x1,~)I1/re > d ~ 

From Propositions 2.3.1 and 2.3.2 we deduce 

inf(fT)" (x) > r(Od" 
s 

which ends the proof  of  Theorem 2.3. 

APPENDIX 2.4.2: CONTINUITY OF THE LEBESGUE 
MEASURE OF FUNDAMENTAL INTERVALS 
(PROOF OF LEMMA 2.4.2) 

Let us denote by ~-~n the set of  order n pre-images of  1/2. This set is in a 
one-to-one correspondence with {0, 1 }" since we can associate to any point x 
in ~ ,  an itinerary (i 1 ..... in) E {0, 1}" defined by 

[ fe(x)  + �89 in_k ~- k 

For every p C N and every itinerary i E {0, 1 }P we define Xp,i(e ) as the 
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location of the corresponding preimage of 1/2 and we prove that those 
preimages continuously depend on e. 

Proposit ion 2.4.3.  There is some positive C o function X(e) on ]0, ed[ 
such that for any e in ]0, ed[, any p E ~ and any i E {0, 1 }P the following 
inequality holds on a neighborhood of e: 

Ix~,,(~') - x~,;(~)l < x(~)I~' - el 

Proof. For given p and i, we define for every k, 0 ~ k ~< p 

xk(e') = f~,-k(xpa(e')) 

We introduce the sequence {~,,k(Xk_l(e')), k C {1,..., p}} defined as follows: 

ifxk.~C [0, 1/2], ~U,k(Xk_l(F_,t)):~9~,(Xk(~'))  

ifxk.~, E [1/2, 11, ~8, ,k(Xk_l(~'))  = [~le,(Xk(~.t)) 

As ~o~ is a C 1 function of e and ~ ( x ) / O e = O ,  we obtain by an easy 
induction: 

~,j %-1  (~')) ~ ,  x~,i(~') = ~ ,~(xk ~(~') ~1, 
=1 #=e  j = k + l  

+ ~ ~,,~(x~_ 1(~')) ~,~ 

From Theorem 2.3,f~ is expanding. Hence 

o 1 
H x(1). d-(P-k) ~e,j(Xj_ l ( e ' ) )  < 

j = k + l  

and, as F(e) < 1 on ]0, ed[ we have 

1 + d_(p_k) x/?~ c~ 
XP'i(C'') #=e. < ~ k'~=l ~--'~ ~e"k(Xk- 1,e,) 

We set B ( e ) =  SUps~(e3/c~e' ) ~0~,(x)l~,=~ ). B(e) is a C O function on ]0, ea[ and 

B(e) 1 
d xp,,(e') < F(e----) 1 d -'/?~ 

Setting X(~)= [4B(e)/F(c)][1/(1 -d -Ca)] ,  we have then 

~ , x , , , ( ~ ' )  ~,=~ < x(s_)) 
4 
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Hence, on a neighborhood of 

< I 

Now we prove Lemma 2.4.2. 
Any order p fundamental interval has its end points in {0} U {1} L; 

U @ - 1 .  Hence, from Proposition 2.4.3, we have for e '  in a neighborhood 
of any given e in ]0, ca[ 

APPENDIX 2.5.1: PROOF OF LEMMA 2.5.1 

As f~ is a C 3 endomorphism andf(~ 1) andf(~ 2) are, respectively, C 2 and 
C ~ functions of the parameter e, we deduce from the Taylor formula: 

f~(x) = x + e + a(x - x*) 2 + r(e, x) 

with 

r(e, x) = 8(x - x*) [ ~--~ f~ ) ( x  *) ~=0 + --}-~Sz J6 v'-o ) 
g =  e 1 

+ - -  ( x -  CO f(1)(,,,~ 
x~ ~ J ~  ,~o,  o=o~ + I 

where 0 < e  l < e ,  0 < e z < e  and ~ lies between x* and x. For e a small 
enough and some fl > 0, there is some K > 0 such that [ r(e, x)] < K Ix - x*  ] 
( 8 + ( x - x * )  2) for 0 < e < e  a and I x - x *  I <ft. For any y in ] x * - f l / 2 ,  
x* +f l /2[  the equation y=f~ (x )  has only one solution x C ]~0~(x*-fl/2), 
~0~(x* +f l /2) [  according to the implicit function theorem. Moreover, for e a 
and fl small enough: 

(1) x~  ]xg-~,Xo* +~[ 

(2) x =  y - e - a ( y - x o )  2 + y ( e , y )  

(3) Ir(c,y)l~Kly-x*ot(e+(y-x*o) ~) 

For given x 0 and n (satisfying the assumptions of Lemma 2.5.1.1) we define 
the sequence {tp, p C {0,..., n}} by tp = x  - x * .  

Proposition 2.5.2. If e d is small enough 0 < tp < ,8/2 for every p 
O ~ p ~ n .  
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Proof. The proof is recursive and left to the reader. 
Then we have for every p in {0 ..... n t, tp+ 1 = tp - eat~ + F(e, tp + Xo* ). 

For (0, v) E yz we define a sequence {v;, p E {0,..., n}} as follows: Vo = to, 
Vl = t l ,  a n d  for p >~ 1, vp+ 1 = v; + av~ - v(fl/p) 3 - OK(v 3 + vp(fl/p)3). Let 
{yp, p ~ {0,..., n}} be the sequence defined by 

1 1 
yp=vp  a ( p + r ) '  where r =  ato 

Then we have the following: 

Proposition 2.5.5: 

(1) yo=0; 
(2) for fl and ea small enough lYll ~< 1/(r + 1)2; 

(3) f o r p ~  {1, . . . ,n-  1} 

yp+l=yp  1 p + z  - a y ~ - v  --OK YP+a(p-+z )  

- OK YP + a(p + r~ a(p + r)Z(p + r + 1) 

ProoL The proof is left to the reader, 

Let us define { a p , p E  {0,..., n}}, by a p = [ y p l ( p + r )  2. Then we have 
the following: 

Proposi t ion 2.5.6. Assuming /~ small enough, 
every p in {0,..., n}. 

ProoL The proof is recursive and left to the 
proposition we deduce 

Crp 1 
Yp ~ (p + r) ~ ~ ( p + T )  3/2 

e v ~ < ( p + r )  l/2 for 

reader. From that 

so that 

1 1 ~< Up a(p + r) (p + r) 3/2 

We now reach the end of the proof. From tp+ 1 = t p -  e -  at~ + F(e, tp + x*) 
and 17(e, Y)I < - K l y - x * I  (e + ( y - x * )  2) we deduce f o r p )  1 

t p - a t ~ + K  t~+---~-- > / t p + l > / t ~ - a t 2 - K  t3+ p3 t 
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if we denote by {v + } the sequence {Vp} obtained for (0, v )=  (1, 0) and {vp-} 
the sequence obtained for (0, v) = (1, 1) we have therefore 

v + >/tp >/v 7 for every p, 0 ~< p ~ n 

Hence, applying Proposition 2.5.6 to the sequences {o +} and {o7} 
associated with {v +} and {v;} we obtain 

tp a (p+r)  ~ ( p + O  3/2 for everyp, O ~ p ~ n  

which proves Lemma 2.5.1(1). 
The proof of Lemma 2.5.1(2), which is quite similar, is left to the 

reader. 

APPENDIX 3.2.1: PRELIMINARY RESULT 

For any x o in [~po(X* +ft/(logfl)z), x* +ft/(logft) 2] we define the 
sequence {x,, n E N} by x,+ 1 = ~Oo(Xn). And for any Xo in [Xo, Xo* +ft] we 
define {s n E N} by x'~+ 1 = ~Oo(s Then we have the following: 

Lemma 3.2.3. For ft small enough there is some N ~  IN such that for 
every n ~ IN, n > N: 

2 1 
aft(log fl) 2 (n + 1)3/2 

Proof. Since Xo>~Oo(Xo* +ft/(logfl) 2) we have Xo>/X* +fl/2(logft) 2 
for fl small enough, so that if we set r = 1/a(Xo - x*), 1 < r ~< 2(log ft)2/afl. 
From Lemma 2.5.2 we have 

1 1 1 1 1 
[ s  (n+v)3/2 q (n+v,)3/2 + a  n + r  n + r '  

where r ' =  1/a(x~- x*). Hence 

2 ~- 
• Xn  • 4 (n + 1) 3/2 a(n + 1) 2 

so that 

2 [ 2(log ft) 2 ] 
IX, -- x,I afl(log ft)2(n + 1)3/2 aft(log ft) 2 q a ~ - ~ l ~ 2 j  
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For fl small enough, afl(logfl) 2 < 1/2 and if we choose N > (16/a2)(log/3) 8 
we have for n > N 

IG-x .14  

Proof of Lernrna 3.2. 1. 

2 1 

a/3(logfl) 2 (n + 1) 3/2 

(a) First, we assume that for some p ~ n 

fP(K,)  ~ [Xo*, Xo* + (log/3) 2 

Let 

l [ I k 0 = s u p  q E  {0 ..... n } , f q ( K . ) ~  x * , x *  + (logfl)------ ~ r  

and 

k I - - sup{q@ {0 ..... n } , f g ( K . ) ~  [x*,x* +f l ]  r  

We assume that k 0 > N (N is defined in Lemma 3.2.2). 

Proposit ion 3.2.4.  For fl small enough k 1 - k o/> (log/3)2/4a/3. 

ProoL We set l=in f{x ,  xCfko1(Kn)}. From the definition of k I we 
have fo(1) > x* +/3 so that for/3 small enough x* +/3 > l > x* + f l -  2a/3 2 > 
x* +/3/2. From the definition of  k 0 we have 

/3 
(~okl--ko(I) ~ X0~ -~ (log/3)2 

From Lemma 2.5.2, we have 

 O0  _koq) 1 I 1 
- -  x~ - -  a ( k  1 -  k o + v) ~ (k  l - k o + r )  3/2 

where r = 1 / a ( l -  x*). 
Therefore 

1 1 fl 

a(k 1 - k o + r) (kl - k o + 0 3/2 < (log/3)~ 

so that for/3 small enough k I - -  k o -[- Z" ~ (log/3)2/2a/3 and, as r < 2/a/3 (since 
l > x~ +/3/2), we have for fl small enough k 1 -- k 0 ) (log/3)2/4afl. | 

Proposition 3.2.5. fko~ c [Xo,X o +/3]. 
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Proof. We set 

r o =  sup x and  r ~ =  sup x 
x efkoO(Kn) X efko I (K n) 

For every j in {1,..., k 1 - ko}, fko~ > x* +f3. Indeed, assume that for 
s o m e j  in {1,..., k I - k o }  

fko~ < Xo* + fl 

Then, since, f rom the definition of  k o, 

13 sup x > x*  + - -  
x~ykoo+J(K,) (log fl)2 

we have 2(fko~ < f l -  fl/(1og fl)2. On the other hand, since 2(fko~ > 
fl--fl/(logfl) z and f~0Z)(x)>/1 on [ x * , l ]  we have 2(f0k~ 
f l - - f l / ( log  fl)2. A contradiction. Assume now thatfko~ is not contained in 
Ix*,  x*  + fl]. Then r o > x*  + ft. Since f~l)(x) ) 1/(1 - aft) 2 on [x* + fl, 1] 
and fko~ for every j 0 ~ < j ~ < k ~ - k 0 ,  we have r o - x * ~ <  
(1 - ap) 2~<-k~ 

From Proposit ion 3.2.4 we have then r o - x *  ~< (1 - aft) ~176 so 
that for fl small enough r 0 - x *  ~< fl thus contradicting the initial assumption. 
Thereforefok0(K,) c [Xo* , Xo* + fl]. | 

Now we consider the sets fto(K,), k o < l <~ n. 

Proposition 3.2.6. 
n) such that  for n ~> I > k o 

There is some p > i 

~(fto(K.) ) ~ p'-'* 

(which does not depend on 

Proof. For  n>~l> ko, f~(K,)C3 [x*,x* +fl/(logfl) 2] = ~  from the 
definition of k o. I f  we set p=f~l ) (x*  +fl/(logfl) 2) > 1 we havef~l)(x)>/p 
on fto(K,) for every l, k 0 < l ~< n. Therefore )~(f~(K,)) <. 
pl-"X(f~(K,))<.pt-" .  | 

We now consider the sets flo(K,),  0 ~< l ~< k 0. We define for 0 ~< l ~< k 0 a 
sequence {K t, l C {0,..., ko} of  subsets as follows: 

K ko =fkoO(Kn) 

k l-~ = f o ( g  l) 

Then we have the following: 
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Proposition 3.2.7. For every l in {0,..., ko}, either 

K z=f~(K,)  or supx~<  inf y 
x E K  l yEf l (Kn)  

OrooL The proof  is recursive, using the monotonici ty of  ~o o and ~o ; it 
is left to the reader. 

Now we compare  the Lebesgue measures off~(Kn) and K t. 

Proposition 3.2.8. For  every 1, 0 ~< l ~< k o 

~(fto(K,) ) <~ 2(K ' )  

Proof. Let I be any integer in {0 ..... k o -  1}. I f  Kl=fto(K,)  then 
K t+l =fo(Kt)=flo+l(Kn) so that 

2(K') ).(fro(K,)) 
,~,(KI+ 1)  - -  2(f~o + I (K.)  ) 

if not, then SUpxeK, x ~< infx~y~(K. ) x. Since K k~ = fko~ c [x*, X*o + fl], we 
have also 

K'  c [Xo*, xo* + 

P ( 1 )  (X ' I  " "(1) (X~ As Then, we use Lemma  2.5.3 and we get SUPxeKiJ0 ~, ~ ~ lnfxef~(K,)Jo I j- 
�9 ~ ' (1 ) (  x 2(K'+l)~supxeK,f~l)(x).,a,(K t) and )~(f~+'(Kn))>/lnfx~/o(K,)j o , )" 

)~(fto(K,) we have then 

.~(K') ~.(f~(K.)) 
,~(KI+I) >/),(f~+~(gn) ) 

so that, asfok~ = K k~ we have for every t, 0 ~< I ~< k o, 

Now we majorize )~(Kl). 

Proposition 3.2.9. 
Lemma 3.2.1), 

,~(f~(K.)) <~ ).(K') I 

For  every l, O ~ l < k  o - N  (N is defined in 

2 1 

2(K') ~ afl(log fl) 2 (k ~ _ l + 1) 3/2 

Proof. (a) We set l o = infxeKk ox. From the definition of k o, we have 
Xo* < lo < Xo* + fl/(log fl)2. As K k~ c [Xo*, Xo* + fl] (see Proposit ion 3.2.5) we 
have 

x * < l  o < r o < x * + f l  
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Therefore, we can use Lemma 3.2.3 and we get 

2 1 

~z,-" , l)% afl(logfl)z (ko- l  + 1) 3/2 
for every I, O K l < k o - N  

Now we prove Lemma 3.2.1 under the preceding assumptions: 

(1) For some k ~ N, fko(K.)~ x*,x*+ (logfl) 2 4=0 

(2) ko>N 

As in the proof of Lemma 3.1.3, we have for (a, b) in K~ 

l I log (f'~)(1)(a) <~ L o ~ If~(a)- fP(b)l, 
(fg)(1)(b) p=O 

where L 0=  sup 
x~ix~, l l  

Ifg~)(x)l 

we have ~fk~ + 1. We deduce from Proposition 3.2.8 and 
Proposition 3.2.9 

ko-N-I 2 ~ 1 4 
Z 2(f~(Kn))< afl(logfl)2 j~=of~7T< afl(logfl): p=0 

and from Proposition 3.2.6 we have 

2(foP(K.)) ~< - -  _ 
p=ko k=o p 1 

Therefore 

log l (f~)(1)(a) IN+ p _  l ~ afl(logfl)2 t (fg)(1)(b)ll<~Lo 1 +  p 4 

(b) Assume now that there is some k E N such that flo(K,)~ 
[x*,x* +fl/(logfl) 2] r 0 but k o ~ N .  Then we no longer need Proposition 
3.2.9 and we have 

log t (f'~)(l)(a) 
t (f~)O)(b) l ~ L ~  I ))I )~(f~(K.)) + ~, 2(foP(K~ 

p=O P=ko+ 1 
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(c) Assume that for every p, 0 ~ p <~ n, f~(K,) ~ [x*, Xo* + 
_ r m r , . .  +ft/(logft) 2) > 1. For every p, ft/(logft)2]=O. We set P - c o  t~o 

0 ~ p ~< n, inf~yg(K,) f(o'(X) > p. Then by the same proof we already used in 
Lemma 3.1.3 we have 

t (fg)('(a) I Cop log 

(d) We set 

4 
A = s u p  I pL-~~ , L 0 ( N + I +  p---~-+ aft(log ft)2)l  and p = exp A 

We have then for every n C N and every component of E ,  except I .  

1 (f~)(n(a) ~ ?) | 
6 ~ (fg)( ')(b) 

APPENDIX 4.1.5: PROOF OF LEMMA 4.1.5 

We define centered k cylinders as follows: for every k ~ N for every 
(i k,..., i o ..... ik) E {0, 1} 2k+ 1 Vk(i_k ..... ik) = { f E  {0, 1} Z, jp = ip for every p, 
- k  ~< p ~ k}. Then we have the following: 

Lemma 4.1.6. The measure ~[~(Vf_p ..... ip) of any given centered p 

cylinder is a continuous function of e on ]0, Ca[. That result was proved by 
Dobrushin (12) for potentials such as ours. To every C O function g on [0, 1] 
we associate a one parameter family of C O functions on {0, 1} z {~ ,  
0 < c < Ca} thus defined: ~ ( i ) =  g~(r(f)) where r is the projection from 
{0, 1} z onto {0, 1} N. We define on c~~ 1} Z, FR) the following C o norm: 

II gilt0 = supr~to, uz [ g(F)l. 
We call a k-cylinder function any C o function which takes constant 

values on centered k cylinders of {0, 1}( Then we have the following: 

Lemma 4.1.7. There is some sequence {~n, n ~ ~N} which converges 
to ~ in cC~ 1} z, P~), l[ Hco) such that for every n, ~ is an n-cylinder 
function. 

Proof. The existence follows from the Stone-Weierstrass theorem. 

Lemma 4.1.8. For every eo in ]0, Ca[, ~(o#~) is a continuous 
function of e at e 0 . 

This is a obvious consequence of Lemma 4.1.6 and Lemma 4.1.7. 
We now prove Lemma 4.1.5. 
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Fig. 7. 
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Successive images of an interval I in the region around Xo*. 

from Lemma 4.1.3 and Lemma 4.1.8 we deduce that ~ ( ~ )  is a continuous 
function of  ~, 

A P P E N D I X  4 .2 .1 .  P R E L I M I N A R Y  RESULTS 

(1) First we prove that there are some ~ > 0 and some ~' > 0 such that 

Since 2(I)~< r/0, I O J =  0 and f~(I)(-'~ J 4: 0 ,  and from the definition of  
r/o, we have 

- 7 ) ,  x0* - 7 [  

Let l be the smallest integer such that t , f~(Xo - - 7 ) > x * + 7 .  From 
Proposi t ion7.2.2 we have l >  [2/(ae)l/2]arctan[7(a/ed)l/2]. Therefore as 
p ~> l we have px /~  > ~ where ~ =  (Z/v/a)  arctan[7(a/ed) ~/2] for e a small 
enough. Besides p ~< l + 2 < 2~c/(ea) ~/2 so that px /e  < ~' where ~' = 2~r/x/~. 

(2) Then we prove that 2 ( 0  < D2(f~(I)) for some D > 0. 
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We have 2(f~(I))  = 2(I)(feP)~l)(~) where ~ C ]fP~(Xo* - Y), x* - y[. 
Therefore 2 P I  > ~  p a) 2 (1) 2 , ( f ~ ( ) )  ~ (I)(f~) (~o~) (r o - 7)). Assuming that e a < 7 
and a7 < 1 we deduce from Proposition 2.2.2 that for ea and y small enough 
,1,(/) ~< D2(fP(I)) for some D > 0. 

(3} Lemma 4.2.8. For fl and ea small enough and r/o < r there is 
some L > 0 such that for every in ]0, ea[ and any n ~fl~-1/3 we have the 
following: 

(a) For any x o in ]x* +/?/4,  x* +/~/2[ and any 22 o in ]Xo,Xo+r/o[, 
the sequences {x v, O<~p<.n} and {2;, O<~p<~n} defined by X ; + l =  q)c(x;) 
and -~+1 = ~~ satisfy [~?p - xp[ ~ (L/p z) [-fo -- Xo I for every p, 1 ~< p ~< n. 

(b) For any )?o in ]xo* - f l / 2 ,  x* - f l / 4 [  and any x o in ])7o - r/o, )?0[ the 
sequences {xp, 0 <~ p <~ n} and {)?p, 0 ~< p ~< n} defined by xp+l = f~(x;) and 
2v+ 1 = f~(2p) satisfy f.,?p - xp I <~ (L/P ~) IJ?o - Xo ] for every p, 1 ~< p ~< n. 

Proof of Lemmo 4.2.8. We prove the first part and leave the proof of 
the second part to the reader. As q), is increasing an [0, 1] and )?0 > xo we 
have for every p, 0 ~ p ~ n, x;  > 2p. Besides there is some ~p C ]xp+ 1, )?p+ 1[ 
such that )Tp xp ('~p+l (1) -- = --Xp+l)fe (~p). As Xo* <xp+l <Xo <(Xo* +fl/2, 
)?v+l < 2o < xo + ~/o < x* +/~ and f~l) is increasing on [x*, Xo +/3] we have 

(1) f(1)(~p) > f~  (xp+ 1). Hence, setting Sp = l/]-[f= 1 _cf")(x, :) we have )?p -- xp 
S;(2 o - Xo) for every p, 1 ~< p ~< n. 

Now we majorize Sp. 

Proposition 4.2.9. For fl and ea small enough there is some L > 0 
such that S v < LiP 2 for every p, 1 ~< p ~ n. 

OrooL For every x in ]x* ,x*  + fl[ we have 

f(,J)(x) = 1 + 2a(x -- x*) + S(e, x) where 

S (e , x )=  ~-ff~ea~ ~ o:] ( x - x o * ) +  c~ fo )  x* 

sz (g2 (,) * ) ( x - x * ) 2 f ~ , ( ~ )  
+-~- 8 ~ - f  (x0) -~ 2 

and ~ ]x*,x[ ,  0 < e l < e, 0 < e z < 8. Therefore we have for some K > O: 

f(cl'(x:) ) 1 + 2a(x: -- x*) -- K(e + (xj -- Xo) ~-) 

for every j ,  1 ~ j ~ n. 
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From Lemma 2.5.1 we have I x * - X o -  1/a( j+ r)l ~< 1 / ( j +  r) 3/2 where 
r = 1/a(x0 - x * ) .  Therefore for ed < 1/K we have 

6 
" (1 ) [X  ~ + r)3/2 ] (1 + j . + ~  ) where s ,  ~ j) ( 1 - / r  [1- (j 

a 1 +K(a + 1) z 
6 -  

1 - -  K e  e a 3 

so that for fl and ed small enough, 

1 ( _2  k l ) e x p  [ j----~l 1 

where N=exp(--2flK6J3)exp[--26~(3/2)] exp[--4~(2)] and ~ denotes the 
Riemann zeta function. 

P There is some B > 0 such that I log p - Y'j= ~ 1/jl < B. Hence Sp <~ Lip 2 
f o r  any L > ( l /N) exp(2B) exp[(16/afl) ~(2)]. 

Lemma 4.2.8 follows from Proposition 4.2.9. 

Proof of Lemmo 4.2.1. We assume in what follows 3y <fl  < @. 
Since p > @-1/2 we have for ~e small enough p > 2([fie -I/3] + i). Hence we 
can write 

p -- 1 [/36 -1/3] p -- [/3 ~-l/3l 1 

2(f~(I ) )=  ~ 2(f ' ,(I))+ ~z~ )~(f'~(I)) 
1=1 I=1  1=[3~ 1/31+1 

p--1  

+ ~ 2(f',(I)) 
/ = p _  [~g i/31 

Since 2(I) ~< ~/o and 2(f~P(I)) < ~/o, we deduce from Lemma 4.2.8 that 

p-~ ~z2L 
2(ft,(I)) <~ [2(1) + 2(f~(I))] T + Z'~ 

/=1  

where we denote by X, the expression 
p--  [~3g -1/3 ] 1 

2(f'~(I)) 
/ =  [/3g-I/3] + 1 

Now we majorize Z~. Assuming I is a closed interval, we set ft,(I) = [xt, 21]. 
Then we deduce from Lemma 2.5.1 

1 1 
'tx~ o - xo*l ~ (l  ~ + r)3/2 + a( io  + r~'  where l 0 = [fie -1/3] + 1 

and 
1 

2 " m  
a(x* - Xo) 

822/36/3-4 5 
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Hence, for e a small enough IXo*-Xlo l<(2 /a /3)e  1/3. We have also 
Ix* -x ;_ t01  < (2/afl)e 1/a (the proof  is left to the reader). Therefore as f~ is 
increasing, we have for every q, l 0 ~ q ~ p -  l 0, I x * -  xql < (2/a,/3)e 1/3. 

On ]x0* - / 3 ,  x*  + fl [ we have f~(x)  = x + e, + a (x - X*o )2 + r(e, x) where 
Ir(e,x)l <g ' { t x - x * o l  3 + E I x - x * t }  with some K '  > 0  which does not 
depend on ft. Then we have the following: 

Proposition 4 .2 .10 .  For fl < 1/2K'  and every point x which satisfies 
for s o m e n C N  J If,(x) - x*[ </3 for every j ,  0 ~< j < n, we have 

f~ (x )  >~ x ]~ + ~ -  for every j ,  0 ~< j ~< u 

Proof. The proof  is recursive. It is left to the reader 

Proposition 4.2 .11 .  There is some q E IN such that f{(Xlo ) > x*  + 
(2/afl)e 1/3. The proof  is left to the reader. 

q (2~aft) el~3 Then have the We set l l = i n f { q ~ N , f ` ( x t 0  ) > x * +  }. we 
following: 

Proposition 4.2.12. Z~< xpt0+/l ~-q=,0+l "~(f~q)). 

Proof. We have ;- t0 * (2/a/3)e 1/3 and a ,  w0J > If,  (Xo-Xo)l < c,o+,,r.. 
x*  + (2/afl)e 1/3. As f ,  is increasing, we have therefore p - l o < l o + l 1 so that 

l o+ l t  

X , <~ S ~ ,~(f~(I) ) II 
q--lo+ 1 

We assume e a </3 3/2. 

Proposition 4.2 .13 ,  If e a is chosen small enough, we have for every 
e in ]0, ~d[ 

(1) f(,'>(x) > 1 on ]x* + e 2/3, x*  +/3[ 

(1)(x (2) f ,  . ) <  1 o n  ] x g - / 3 ,  X*o-t~ 

(3) If~f(x) - I I < 8a e z/3 on [x* - 2e 2/', x*  + 2e z/'] 

The proof  is left to the reader. 
We recall that f { ( I )  = [xq, 2q]. We set I z = sup{q C IN, Xq < x *  + e 2/3 } 

and l 3 = sup{q E IN, Eq < x * -  g2/3}. We have for ed small enough 1 o < 13 < 
12 < l 0 + I~ so that 

13 12 lo+l! 
S ~ <  ~ 2 ( f { ( I ) ) +  ~ 2 ( f { ( I ) ) +  ~_~ 2 ( f { ( I ) )  

q--lo+ 1 q = / 3 +  1 12 + 1 

Proposition 4.2 .14 .  For  e n small enough, we have for every g in 
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13 

(1) X 
q = lo+ 1 

1o+ll 

(2) 
q = 12+ 1 

16L 
2 ( f ~ ( I ) )  <~ ~ 2(1) (L is defined in Lemma 4.2.8) 

32rcL 
2 ( f ~ ( I ) )  ~ , _  2(f~(1)) p/4 v'a 

Proof .  (1) For every q, l o < q ~ l  3, f q ( 1 ) c ] x * - - f l ,  Xg--g2/3[. 
Therefore y]q3=to+x2(f{(1))< ( I 3 -  lo) 2(f~(I)) .  From Lemma4.2.5 we 
deduce 2(f~~ (1/l~)4(1). Hence 

13 

2 
q = l o + l  

2(fq(1)) ~< ~ 4(I) 

From Proposition 4.2.10 we have 

X g  - -  ~2/3 > Xl  3 > X l  0 
(l 3 -- 10)e 2e 1/3 C 

2 > x* - a--fl- + (13 - lo) -~- 

so that, for 
have then 

e a small enough l 3 - I  o < 4g'2/3/afl. And as l o >fl~-1/3/2 we 

13 16 
S 2(f{q)) 7ar L2(1) 

q=10+l  ~ a/~ . 

l 2 < q ~ lo + l 1 , q f~(1)  c Ix*  + e  2/3, Xo* +fl[ .  From (2) For every q, 
Proposition 4.2.13 we have then 2 ( f  q + 1(I)) >/2(fq(1)) for every q, l 2 < q ~< 
l 0 + l 1 so that 

/0+/1 

~. 2(fq~(1)) ~ (lo + li -- 12)2( f~+t l ( I ) )  4 (lo + I 0 2 ( f ~ + t l ( 1 ) )  
q= 12+ 1 

As l 0 + l I > p - 1 o we deduce from Lemma 4.2.8 

L 
,~(f~o+t1(1)) ,( ( p  -- l o -- ll) 22(fPe(1)) 

so that 

104-11 l~ + l l  2 

4 --lo--tO L2(ff(1)) 
t~+, (P 

One easily shows, using Proposition 2.2.2, that for e d small enough 

2~ e-~/2 
/o+ /1  < - ~ -  and P -- (lo +/1)  > _~ ~-1/3 
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Therefore 

lo+ t, 32n 

~' 1(fq(I)) ~ V/-d fl3/~ q=12+1 

since e d < fl3/2. II 

Proposition 4.2 .15 .  For ed small enough we have 

12 
1(fq(I)) <~ 128L2(fP(I)) 

q=13 + 1 

Proof. For e d small enough, we have 

Lt(f~(I)) 

for every e in ]0, ed[ 

fq~(I) c [Xo* -- 2e 2/3, x0* q- 262/3 ] for every q, l 3 < q ~< 12 

(the proof  is left to the reader). 
From Proposition 4.2.13 we have then 

,2 1(f~(/)) 
2(f~( / ) )  ~< 8ae2/3 

q=13+ 1 
- -  [(1 + 8a~2/3) %- t2 -  1] 

From Proposition 2.2.2 we deduce l 2 - 13 < 4e -  1/3 for e d small enough. 
We have f~l)(xl2)> 1 (the proof  is left to the reader). Therefore 

f~l)(x) > 1 on f~ ( I )  for every q, 12 ~< q < l 0 + l I so that 

12 
i(f{(I)) <~ 8~-1/3~(f~+l'(I)) ~ 128L2(f~( / ) )  II 

13+ 1 

Using Propositions 4.2.14 and 4.2.15 
results we prove Lemma 4.2.1: 

and the second of the preliminary 

where 

p - 1  

i(ft~(I)) <, C2(f~(I)) for e a small enough 
l=I  

R2L ( D ~z ) 
C = - - ~ ( l  +D)+128L 1 + 6 ~ +  4X/~f13/4 

APPENDIX  4.2: PROOF OF L E M M A  4.2 .2  

We set C =  [xl,~, x0* -- y], T = [ x 0 * + Y ,  x2,~], and E = [ 0 ,  x l ,~[U 
]x2, ~, 1]. We have 2(I)=(f~)(1)(~)2(K) for some ~ C K .  Hence, setting 

f~(~) for every j ,  0 ~< j < p, we have 2(I) = i ( g )  p- 1 -(1>~ ) ~ j=  J 
YIj=0 J~ ~. j,. 
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Proposition 4.2 .16 .  Let x be any point such that for some n ~ N: 

(1) Un(x) E E  

(2) J f~(x) C CE for every j ,  0 ~< j < n 

Then 

n - - I  

]J~ (]) X f~  ( ) ) > 1  
j = 0  

Proof. This is an obvious consequence of Proposit ion 2.2.2. 

We now define two ordered sequences of  integers {tq, 1 ~ q ~< N} and 
{tq, 1 <~ q <~ N'} as follows: 

(1) For every q in {1 ..... N } , O < . t q < p , { t q _ ~ C E a n d ~ t q ~ C E ( e x c e p t  
of course if tq = 0). 

(2) For every q in {1 ..... N'}, 0<. t'q < p, {t;-1 C CE and { t ; ~ E  
(except if t~ = 0). 

(3) Those sequences are maximal.  

Then ] N - N ' I <  i and if we se tA  = {j, O ~ j < p ,  ~jCE}.  

(1) 
(2) 

Proposition 4 .2 .17:  

[ r i c E ,  (ff){l)(~) > 2cardA 

2cardag ['P--tu~(1)(~ If I O CE @ O, (ff)(1)(~) > ,ae , v iN)" 

Proof. (1) Assume N = N ' .  Then we have 

0 4 t ,  < t{ < ... < i N < g <  p 

so that 

N N 1 

q = l  q = l  

x (/f-"3" 

From Proposit ion 4.2.16 we have then 

N - 1  
p (1) (ftl](1)(~'~(fp--t~,](1)(X "~ ( f~)  ( { ) >  . . . . . . . . .  , ,',t}, ~ (f~+l-lq)(1)(~tq) 

q = l  
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t N - - I  ! Since f(~l)(x) = 2 on the subset E and cardA = p - t N + t I + Y~q=l t q + l  - -  tq ,  

we have then (f~)<l)(~) > 2c,rdA. If N '  = N + 1, the proof is similar. 

(2) The proof is similar and left to the reader. 

For every x E  C, we define 
f ~ ( x ) E  C}. Similarly for every x in 
ViE {0 ..... q I f ~ ( x ) E  T}. 

r = sup{q • N, Vj C {0,..., q}, 
T we define ~r(x) = sup{q ~ N, 

Proposition 4.2.18. There is some 0 < G < 1 such that for every e in 
]0, ed[ and any intervals I and K satisfying the assumptions of Lemma 4.2.2 

card A 
> G  

s - card A 

Proof. From Proposition 2.2.2 there is some P E N such that for 
every x in C, every y in T and every e in ]0, ed[ 

~ (x )  < P and ~r(y) < p 

Therefore the number of successive iterates in any connected component of 
C J - E  is majorized and since any orbit leaving the subset T must visit 
region E before entering region C or region T, at least N '  points of the orbit 
belong to E and at most 2 N P  to C J - E .  We have then card A > N '  and 
s - card A < 2NP.  

Therefore, setting G = 1/4P (assuming N > 1) we have 

card A 
> G  I 

s - card A 

From Proposition 4.2.17 and 2.2.2 we have, setting 

72 
6 -  (x* x 2, (f~)(1)(~) > 62cardA 

- -  1 , 0 )  

From Proposition 4.2.18 we have cardA > [ G / ( 1 - G ) ]  s. Therefore setting 
a = G/(1 - G) and F = 1/6 we have 

X(K) K X(I) F2 -a s  I 
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APPENDIX 4.2.4: PROOF OF LEMMA 4.2.4 

Proposition 4.2.19. For every n C N, every e in ]0, ed[ and every x 
in C J, we have 

eK i 

hn 'e (x )  < 1 - -  2---'---~ 

ProoL This is an obvious consequent of  Lemma 4.2.3. 

P r o p o s i t i o n  4 . 2 . 2 0 .  There is some A > 0 such that h,,~(x) is 
Lipschitz on CJ with Lipschitz constant A for every n C N and every e in 
]0, 

Proof. We have 

Ihn, , (x)-  h,,~(y)l < hn,~(x ) 1 h,,~(y) h,, ,(x) 

Hence, from Lemma 4.2.3 and Proposition 4.2.19 we have 

lh,,.~(x) - h.,~(y)l < - -  
e K' 

1 - 27 
(1 -- e -~c'lx-yl) < A Ix -- Yl 

where A = eK'a/(1 -- 27) and a = sup(2K' ,  2(1 - e-K')) .  | 

From that proposition, we deduce that for every e in ]0, ee[ the 
sequence {h.,.(x), n E N} is equicontinuous on CJ. Therefore {p.,~(x), n E ~} 
is also equicontinuous on CJ. 

We know from Lasota and Yorke (14) that p.,.(x) converges to p~(x) in 
L I . From that convergence, the continuity of  the function p~ and the equicon- 
tinuity of  the sequence {p.,~, n C N} on CJ, we deduce that p.,~ converges 
uniformly to p~ on CJ. 

APPENDIX 4.2.6: PROOF OF LEMMA 4.2.6 

First we prove the following: 

Proposition 4.2.21. For every n C N and every e C ]0, ca[ 
U~[(~+1(1/2),  ~0~(1/2)1)=g~([1/2, ~t o ~0~(i/2)]). 

The proof  is recursive and founded on the invariance ofp~.  It is left to 
the reader. 
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Proposition 4.2.23. 
such that 

Proposition 4.2.22. For  e d small enough we have 

sup{n, opt(l/2) > xl,~} > for every e ~ ]0, ed[ 

The proof  is left to the reader. 

For every e in ]0, ea[ there is some p(e)C N, 

(2) #~([1/2, ~,~o ~0f(~)(1/2)]) < (ae) '/2 

Proof. We have 

[ (1/ae)  1/21 - 1 

n = 0  

r ~p~(1/2)l) < 1 

. + 1  1 2 Besides for every n ~ N, /.t~([9 ~ ( / ), 09~(1/2)])> 0. Therefore, there is 
some p ( e ) <  [a/(ae) l/z] such that p(~)+l /z~([O~ (1/2), 0 ~ ) ( 1 / 2 ) ] )  < (aE:) 1/2 

P(~)I (ae) 1/2. | From Proposition 4.2.21 we have then/~, ([1/2, ~,~o q~ ( / 2 ) ] )  < 

inf (g/ o q)~(~)(1/2)- 1/2) = 5 
cE]O, e~[ 

We set 

Then from 
and from 

From Proposition 4.2.22 we easily deduce that ~ > 0. 
Proposition 4.2.23 we have infx~csP~(X) < (1/5 (ae)ln), 
Lemma 4.2.5, we have 

sup p~(x) < ~V ~ where ~ -  - -  
x ~ C J  t~ 

Therefore we have for Z / ' c  CJ 

sup p~(x) < CV/~ 
x E , ~  y '  
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